Exercises on String Theory I

Prof. Dr. H.P. Nilles

-Home Exercises-

Due 10. January 2012

Exercise 9.1: Green-Schwarz terms from M-Theory

We compactify eleven dimensional SUGRA of a orbifold S^{1} / \mathbb{Z}_{2} in the sence of Hořawa Witten, i.e. such that gauge theories at the boundaries arise. We parametrize the circle by $\phi \in[-\pi, \pi]$, i.e. $\phi \sim \phi+2 \pi$ and the orbifold acts as $\phi \mapsto-\phi$ and has two fixed points at $\phi=0, \pi$. We are interested in the topological Chern Simons action

$$
\begin{equation*}
S_{\text {topo }}=-\frac{1}{12 \kappa^{2}} \int_{M_{10} \times S^{1} / \mathbb{Z}_{2}} C \wedge G \wedge G, \tag{1}
\end{equation*}
$$

where C is the three form fields and $G=\mathrm{d} C+\ldots$. In order to describe localisation in the eleventh dimension we define on $[-\pi, \pi]$ the forms

$$
\begin{aligned}
\epsilon_{1}(\phi) & =\operatorname{sgn}(\phi)-\frac{\phi}{\pi}, & \epsilon_{2}(\phi) & =-\frac{\phi}{\pi} \\
\delta_{1} & =\delta(\phi) \mathrm{d} \phi, & \delta_{2} & =\delta(\phi-\pi) \mathrm{d} \phi
\end{aligned}
$$

1. Show that

- $\mathrm{d} \epsilon_{i}=2 \delta_{i}-\frac{\mathrm{d} \phi}{\pi}$
- $\int_{S^{1}} \mathrm{~d} \phi \epsilon_{i}=0$
- $\int_{S^{1}} \mathrm{~d} \phi \epsilon_{i} \epsilon_{j}=\pi\left(\delta_{i j}-\frac{1}{3}\right)$

Show furthermore that $\delta_{i} \epsilon_{j} \epsilon_{k}=\frac{1}{3} \delta_{i j} \delta_{i k} \delta_{k}$ Hint: Use the regularization

$$
\epsilon_{1}^{\eta}=\left\{\begin{array}{ll}
\epsilon_{1}(\phi) & \phi \notin[-\eta, \eta] \\
\left(\frac{1}{\eta}-\frac{1}{\pi}\right) \phi & \phi \in[-\eta, \eta]
\end{array},\right.
$$

ϵ_{2}^{η} similarly and $\delta_{i}^{\eta}:=\frac{1}{2}\left(d \epsilon_{i}^{\eta}+\frac{d \phi}{\pi}\right)$.
2. Show that invariance of (1) under the \mathbb{Z}_{2} implies that $C_{A B C}$ are odd whereas $C_{A B, 11}$ are even components of $C_{3} . A, B, C=0, \ldots, 9$. Hint: What terms does (1) contain? How do the derivatives transform?
3. From Hořava Witten we know that

$$
\begin{equation*}
\mathrm{d} G=\gamma \sum_{i} \delta_{i} \wedge I_{4, i}, \quad \text { with } \quad I_{4, i}=\frac{1}{(4 \pi)^{2}}\left(\operatorname{tr} F_{i}^{2}-\frac{1}{2} \operatorname{tr} R^{2}\right) \tag{2}
\end{equation*}
$$

The two-dimensional descent equations read

$$
\begin{equation*}
I_{4, i}=\mathrm{d} \omega_{i}, \quad \delta \omega_{i}=\mathrm{d} \omega_{i}^{1}, \tag{3}
\end{equation*}
$$

where δ denotes infinitesimal gauge- and local Lorentz transformations with parameters Λ^{g}, Λ^{L}, and

$$
\begin{aligned}
& \omega_{i}=\frac{1}{(4 \pi)^{2}}\left(\operatorname{tr}\left(A_{i} \mathrm{~d} A_{i}+\frac{2}{3} A_{i}^{3}\right)-\frac{1}{2} \operatorname{tr}\left(\Omega_{i} \mathrm{~d} \Omega_{i}+\frac{2}{3} \Omega_{i}^{3}\right)\right), \\
& \omega_{i}^{1}=\frac{1}{(4 \pi)^{2}}\left(\operatorname{tr}\left(\Lambda^{g} \mathrm{~d} A_{i}\right)-\frac{1}{2} \operatorname{tr}\left(\Lambda^{L} \mathrm{~d} \Omega_{i}\right)\right) .
\end{aligned}
$$

The transformations act on the gauge- and spin connection as $A \mapsto\left(1+\Lambda^{g}\right)(A-$ $\left.\mathrm{d} \Lambda^{g}\right)\left(1-\Lambda^{g}\right)$ and $\Omega \mapsto\left(1+\Lambda^{L}\right)\left(\Omega-\mathrm{d} \Lambda^{L}\right)\left(1-\Lambda^{L}\right)$. The curvatures are $F=\mathrm{d} A+A \wedge A$ and $R=\mathrm{d} \Omega+\Omega \wedge \Omega$. We drop the ϕ dependence in A, F, Ω, R, Λ. Show that (3) are indeed fulfilled.
(4 credits)
4. Show that (2) is solved by

$$
G=\mathrm{d} C+(b-1) \gamma \sum_{i} \delta_{i} \wedge \omega_{i}+\frac{b}{2} \gamma \sum_{i} \epsilon_{i} I_{4, i}-\frac{b}{2 \pi} \gamma \mathrm{~d} \phi \wedge \sum_{i} \omega_{i}
$$

where b is a (so far) free parameter.
(2 credits)
5. Show that invariance of G implies that C transforms as

$$
\delta C=\mathrm{d} B_{2}^{1}-\gamma \sum_{i}\left(\frac{b}{2} \epsilon_{i} \mathrm{~d} \omega_{i}^{1}+\delta_{i} \wedge \omega_{i}^{1}\right)
$$

with some two-form B_{2}^{1}.
(2 credits)
6. Since $C_{A B C}=0$, it must in particular be gauge invariant. Show that this is guaranteed by $B_{2}^{1}=\gamma \frac{b}{2} \sum_{i} \epsilon_{i} \omega_{i}^{1}$.
(2 credits)
7. Now since G is globally well-defined, $\mathrm{d} G$ is exact and we can use Stokes theorem. First let $\mathcal{C}_{5}=\mathcal{C}_{4} \times S^{1}$ where \mathcal{C}_{4} is a closed ($=$ no boundary) cycle in M_{10} and S^{1} is the $11^{\text {th }}$ dimension. Integrate $\mathrm{d} G$ over \mathcal{C}_{5} and use (2) to show that

$$
\begin{equation*}
\int_{\mathcal{C}_{4}} \sum_{i} I_{4, i}=0 . \tag{4}
\end{equation*}
$$

(2 credits)
8. Now let $\mathcal{C}_{5}=\mathcal{C}_{4} \times I$ where $I=\left[\phi_{1}, \phi_{2}\right]$ with $-\pi<\phi_{1}<0<\phi_{2}<\pi$. Show that now integration over \mathcal{C}_{5} and Stokes theorem yield

$$
(1-b) \int_{\mathcal{C}_{4}} I_{4,1}=0
$$

