Exercises on String Theory I

Prof. Dr. H.P. Nilles, Priv. Doz. Dr. S. Förste

-Home Exercises-

Due 17. January 2012

On this exercise sheet we examine T-duality on the world-sheet. In the first exercise we consider the group $\operatorname{PSL}(2, \mathbb{Z})$ and some of its properties, which are relevant for T-duality of the torus. In the second exercise we investigate the consequences of T -duality for an open string on a circle and make a connection to D-branes.

Exercise 10.1: The group $\operatorname{PSL}(2, \mathbb{Z})$

We define the group $\mathrm{SL}(2, \mathbb{Z})$ and its action on $z \in \mathbb{C}$ as

$$
\mathrm{SL}(2, \mathbb{Z}):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, \quad a d-b c=1\right\}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d} .
$$

Furthermore, we define $\operatorname{PSL}(2, \mathbb{Z}):=\operatorname{SL}(2, \mathbb{Z}) /\{ \pm \mathbb{1}\}$, and the upper half-plane \mathfrak{H} of \mathbb{C} as $\mathfrak{H}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. The aim of the exercise is to find the fundamental domain of $\mathrm{SL}(2, \mathbb{Z})$ and to show that its generators can be taken to be

$$
S:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T:=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

(a) Look at the order of S as a matrix and as an action on \mathfrak{H}. Argue why it is sensible to consider the subgroup $\operatorname{PSL}(2, \mathbb{Z})$.
(1 credit)
(b) Define $G:=\langle S, T\rangle \subseteq \operatorname{PSL}(2, \mathbb{Z})$ and let $z \in \mathfrak{H}$. Show that there exists a $g_{0} \in G$ such that $\operatorname{Im}(g z) \leq \operatorname{Im}\left(g_{0} z\right)$ for all $g \in G$ and z fixed.
(3 credits) Hint: It is easier to prove this for $g \in S L(2, \mathbb{Z})$, which implies validity for $g \in G$.
(c) Apply an S transformation to $g_{0} z$ to show that $\left|g_{0} z\right| \geq 1$.
(d) Repeat the above argument to show that $\left|T^{n} g_{0} z\right| \geq 1$ for any $n \in \mathbb{Z}$. Argue furthermore that one can now use T transformations to achieve $-\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2}$. What is thus the fundamental domain \mathcal{F} of G ?
(2 credits)
Next, we show that S and T indeed generate $\operatorname{SL}(2, \mathbb{Z})$, i.e. $G=\operatorname{SL}(2, \mathbb{Z})$. To do so we use that every point in \mathfrak{H} can be moved to \mathcal{F} using an element of G. We thus choose a fixed $z \in \mathfrak{F}$, apply an arbitrary $\operatorname{SL}(2, \mathbb{Z})$ transformation γ to it and show that we can bring the result back into \mathcal{F}.
(e) Let $z=2 i$. Argue that $\gamma z \in \mathfrak{H}$. Thus there is a $g \in G$ such that $g(\gamma(2 i)) \in \mathcal{F}$ and $g \gamma \in \operatorname{SL}(2, \mathbb{Z})$. Using $g \gamma z \in \mathcal{F}$, calculate the values of a, b, c, d for

$$
g \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

to show that $\gamma= \pm g^{-1}$ and thus $\gamma \in G$.

Exercise 10.2: T-duality and D-branes

Consider string theory on $\mathcal{M}^{1,8} \times S^{1}$ where $\mathcal{M}^{1,8}$ is the nine-dimensional Minkowski space. The radius of the S^{1} is denoted by R. We define an operator H which maps

$$
H:\left\{\begin{array}{rrr}
X_{L}^{9} & \mapsto & X_{L}^{9} \\
X_{R}^{9} & \mapsto & -X_{R}^{9}
\end{array} .\right.
$$

(a) Recall the spectrum of the closed string, including Kaluza-Klein and winding modes. Is H a symmetry of the spectrum?
(4 credits)
(b) Find the spectrum for open strings with Neumann boundary conditions along X^{9}, i.e. $\left.\partial_{\sigma} X^{9}\right|_{\sigma=0, \pi}=0$. What is the action of H on the boundary conditions and the spectrum?
(4 credits)
(c) Repeat the exercise for Dirichlet boundary conditions, i.e. $X^{9}(\sigma=0)=0$ and $X^{9}(\sigma=\pi)=l$.

