Exercises on String Theory I

Prof. Dr. H.P. Nilles, Priv. Doz. Dr. S. Förste

-HOME EXERCISES-DUE 17. JANUARY 2012

On this exercise sheet we examine T-duality on the world-sheet. In the first exercise we consider the group $PSL(2, \mathbb{Z})$ and some of its properties, which are relevant for T-duality of the torus. In the second exercise we investigate the consequences of T-duality for an open string on a circle and make a connection to D-branes.

Exercise 10.1: The group $PSL(2, \mathbb{Z})$

 $(10 \ credits)$

We define the group $SL(2, \mathbb{Z})$ and its action on $z \in \mathbb{C}$ as

$$\operatorname{SL}(2,\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az + b}{cz + d}$$

Furthermore, we define $PSL(2, \mathbb{Z}) := SL(2, \mathbb{Z})/\{\pm 1\}$, and the upper half-plane \mathfrak{H} of \mathbb{C} as $\mathfrak{H} := \{z \in \mathbb{C} \mid Im(z) > 0\}$. The aim of the exercise is to find the fundamental domain of $SL(2, \mathbb{Z})$ and to show that its generators can be taken to be

$$S := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

- (a) Look at the order of S as a matrix and as an action on \mathfrak{H} . Argue why it is sensible to consider the subgroup $PSL(2,\mathbb{Z})$. (1 credit)
- (b) Define $G := \langle S, T \rangle \subseteq PSL(2, \mathbb{Z})$ and let $z \in \mathfrak{H}$. Show that there exists a $g_0 \in G$ such that $Im(gz) \leq Im(g_0z)$ for all $g \in G$ and z fixed. (3 credits) *Hint: It is easier to prove this for* $g \in SL(2, \mathbb{Z})$, which implies validity for $g \in G$.
- (c) Apply an S transformation to $g_0 z$ to show that $|g_0 z| \ge 1$. (1 credit)
- (d) Repeat the above argument to show that $|T^n g_0 z| \ge 1$ for any $n \in \mathbb{Z}$. Argue furthermore that one can now use T transformations to achieve $-\frac{1}{2} \le \operatorname{Re}(z) \le \frac{1}{2}$. What is thus the fundamental domain \mathcal{F} of G? (2 credits)

Next, we show that S and T indeed generate $SL(2, \mathbb{Z})$, i.e. $G = SL(2, \mathbb{Z})$. To do so we use that every point in \mathfrak{H} can be moved to \mathcal{F} using an element of G. We thus choose a fixed $z \in \mathfrak{F}$, apply an arbitrary $SL(2, \mathbb{Z})$ transformation γ to it and show that we can bring the result back into \mathcal{F} . (e) Let z = 2i. Argue that $\gamma z \in \mathfrak{H}$. Thus there is a $g \in G$ such that $g(\gamma(2i)) \in \mathcal{F}$ and $g\gamma \in \mathrm{SL}(2,\mathbb{Z})$. Using $g\gamma z \in \mathcal{F}$, calculate the values of a, b, c, d for

$$g\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

to show that $\gamma = \pm g^{-1}$ and thus $\gamma \in G$.

Exercise 10.2: T-duality and D-branes

Consider string theory on $\mathcal{M}^{1,8} \times S^1$ where $\mathcal{M}^{1,8}$ is the nine-dimensional Minkowski space. The radius of the S^1 is denoted by R. We define an operator H which maps

$$H: \left\{ \begin{array}{ccc} X_L^9 & \mapsto & X_L^9 \\ X_R^9 & \mapsto & -X_R^9 \end{array} \right.$$

•

- (a) Recall the spectrum of the closed string, including Kaluza–Klein and winding modes. Is *H* a symmetry of the spectrum? (4 credits)
- (b) Find the spectrum for open strings with Neumann boundary conditions along X^9 , i.e. $\partial_{\sigma} X^9 |_{\sigma=0,\pi} = 0$. What is the action of H on the boundary conditions and the spectrum? (4 credits)
- (c) Repeat the exercise for Dirichlet boundary conditions, i.e. $X^9(\sigma = 0) = 0$ and $X^9(\sigma = \pi) = l.$ (2 credits)

(10 credits)

 $(3 \ credits)$