Exercises on String Theory II

Prof. Dr. H.P. Nilles, Priv. Doz. Dr. S. Förste

-Home Exercises-

To be discussed on 15 May 2012

On this exercise sheet we examine the description of Calabi-Yau manifolds via projective spaces. To this end, we discuss basic properties of $\mathbb{C P}^{N}$ and derive a condition that CY manifolds in these spaces have to fulfill. Then we look at some simple realizations in various dimensions.

Exercise 3.1: Basics on projective spaces

(8 credits)
The first thing we need in our discussion are Chern classes. For a general vector bundle \mathcal{V} of rank r (i.e. the fiber is an r-dimensional vector space), the total Chern class is defined in terms of the curvature 2 -form \mathcal{F} of the bundle \mathcal{V} as

$$
\begin{equation*}
c(\mathcal{V}):=\operatorname{det}\left(1+\frac{1}{2 \pi} \mathcal{F}\right):=c_{0}(\mathcal{V})+c_{1}(\mathcal{V})+\ldots:=1+\frac{1}{2 \pi} \operatorname{tr}(\mathcal{F})+\ldots \tag{1}
\end{equation*}
$$

where the $k^{\text {th }}$ Chern class c_{k} is a closed $2 k$-form. The Chern classes are useful as they are topological invariants.
(a) For a given vector bundle of rank r over an N dimensional manifold, what is the highest non-zero Chern class?
(b) Take the special case where the vector bundle \mathcal{V} is the tangent bundle of a Ricci-flat Kähler manifold X to argue that then $c_{1}(T X)=0$.
(1 credit)
Let us now specialize to the case where the Calabi-Yau (CY) X is given as the zero set of an equation in complex projective space $\mathbb{C P}^{N} . \mathbb{C P}^{N}$ is a space of complex dimension N with coordinates $\left(z_{0}, z_{1}, \ldots, z_{N}\right) \neq(0,0, \ldots, 0)$ and an equivalence relation

$$
\begin{equation*}
\left(z_{0}, z_{1}, \ldots, z_{N}\right) \sim\left(\lambda z_{0}, \lambda z_{1}, \ldots, \lambda z_{n}\right), \quad \lambda \in \mathbb{C}^{*}:=\mathbb{C} \backslash\{0\} \tag{2}
\end{equation*}
$$

(c) The space $\mathbb{C P} \mathbb{P}^{N}$ can be covered with open patches $U_{\alpha}:=\left\{z_{\alpha} \neq 0\right\}$. In these patches, one uses the affine coordinates $x_{i, \alpha}:=z_{i} / z_{\alpha}$. Give the transition function on the overlap of $U_{\alpha} \cap U_{\beta}$.
(d) Argue that in $\mathbb{C P}^{N}$ only homogeneous polynomials are well-defined.

Obviously, the equivalence relation (2) defines a line in \mathbb{C}^{N+1} through the origin and the point $\left(z_{0}, z_{1}, \ldots, z_{N}\right)$. By fibering this line over every point in $\mathbb{C P}^{N}$, one obtains a line bundle, the so-called tautological line bundle. We denote this line bundle by $\mathcal{O}(-1)$. The dual of this line bundle, the so-called hyperplane bundle, defines a linear polynomial in the homogenoeus coordinates and is denoted by $\mathcal{O}(1)$. Polynomials of degree d are obtained from tensoring $\mathcal{O}(1) d$ times with itself, $\mathcal{O}(1)^{d}:=\mathcal{O}(d)$.
(e) Using (a), we can write $c(\mathcal{O}(1))=1+H$ for some closed 2-form H. Use (1) and $\mathcal{F}_{V \otimes W}=\mathcal{F}_{V} \oplus \mathcal{F}_{W}$ for line bundles to calculate $c(\mathcal{O}(d))$.
(1 credit)
Assume now that X is given as the solution to a polynomial equation $S\left(z_{i}\right)=0$ where S is homogeneous of degree d. The total Chern class of X is given in terms of the total Chern class of $\mathbb{C P}{ }^{N}$ and of the total Chern class of the bundle $N S$ normal to the hypersurface defined by S via the adjunction formula

$$
\begin{equation*}
c(X)=c\left(\mathbb{C P}^{N}\right) / c(N S) \tag{3}
\end{equation*}
$$

where $c\left(\mathbb{C P}^{N}\right)=\prod_{i=0}^{N}(1+H)$.
(f) Use (3) to read off the first Chern class $c_{1}(X)$. Show that $c_{1}(X)$ is trivial for $d=N+1$. Hint: Express S in terms of H and Taylor expand the denominator. (3 credits)

Exercise 3.2: Calabi-Yaus as hypersurfaces in projective spaces (12 credits)

Let us now apply the above results to describe CYs as hypersurfaces in projective spaces. We will investigate examples of Calabi-Yau manifolds in 1,2 , and 3 complex dimensions.
(a) Let us start with the CY 1-fold, i.e. a CY manifold in $d=1$ (complex) dimensions. Using the results from Exercise 3.1, it is given as a cubic equation in $\mathbb{C P} \mathbb{P}^{2}$. Write down the most general cubic equation.
(1 credit)
CYs given in this way always have one Kähler parameter, $h^{1,1}=1$. The the number of complex structure parameters $h^{d-1,1}$ is given by the number of independent coefficients in the defining equation up to $G L(d)$ transformations.
(b) How many independent complex structure parameters are there?
(1 credit)
(c) Use your results to calculate the Euler number. Which manifold is a CY 1-fold topologically equivalent to?
(1 credit)
Another way to calculate the Euler number is via the integral of the highest-dimensional Chern class, $\chi=\int_{X} c_{d}$.
(d) Use (3) to calculate the top Chern class. Calculate the integral using $\int_{X} c_{d}=c_{d} \cdot(N+1) H$ with $H^{N} \equiv 1$.
(1 credit)
(e) Next we repeat the analysis for the quartic in $\mathbb{C P}^{3}$, which gives a CY 2-fold, a so-called K3 manifold. Calculate the number of complex structure coefficients and subsequently the Euler number by summing the $h^{p, q}$ (note that both the Kähler and the complex structure contribute to $h^{1,1}$ here). Compare your result with the calculation of the Euler number via integration of the top Chern class. (4 credits)
(f) Repeat the same analysis for the quintic in $\mathbb{C P}^{4}$ to obtain a CY 3-fold. (4 credits)

