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–Opening Remarks–

The lecture is accompanied by exercise sessions of two hours per week, which will start
next week already. The exercise sheets will usually be handed out on Wednesdays, during
the lecture, and are due on the following Wednesday. For admission to the final exam, you
need to achieve at least 50% of the total points from all exercise sheets. Your grade will
then be based upon performance in the final exam; i.e. the exercises do not contribute to
your final mark.

Latest information will be posted on the webpage. The exercise sheets will also be available
on the webpage, so you can help protect the environment :).

Bardia will be preparing the sheets and organizing the exercise classes. He’s reachable at

Bardia Najjari Farizhendi

Room: 2.023, BCTP (Wegelerstr. 10, 2nd floor)

E-Mail: bardia@th.physik.uni-bonn.de

There will be four tutorial groups, as we agreed in the lecture. Here is the info:

Amitayus Banik Mondays 14 - 16 SR II – HISKP

Benoit Scholtes Tuesdays 10 - 12 Raum 0.021 – AVZ I

Gianluca Stellin Thursdays 10 - 12 Konfrenzraum I – PI

Daniel Galviz Fridays 12 - 14 Konfrenzraum I – PI∗∗∗

*** On April 12th and May 10th, the Friday Tutorial will be held in Seminar Room 1,
BCTP.
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–Class Exercises–
April 8th - 12th

C.1 Spacetime Diagrams
In the following exercise we consider, for simplicity, a two(temporal+spatial) dimensional
spacetime.

(a) Draw a spacetime diagram (x, t) and present the following objects

(i) an event.

(ii) a light-ray.

(iii) the worldline of an object that travels with velocity v < 1.

(iv) the worldline of an object that travels with velocity v > 1.

(v) the worldline of an accelerated object.

(b) Draw a spacetime diagram (x, t) of an observerO at rest. Into this spacetime diagram
draw the worldline of an observer O′ that travels with velocity v measured in the
restframe of O. What are the coordinate axes of the spacetime diagram of O′?
Hint: What is his time-axis? How do you then construct the space-axis?

(c) Remember the relativistic length contraction phenomenon where a length l′ in the
frame of the observer O′ appears as a length l to the observer O, with

l =
√

1− v2l′ .

In the following we consider the so-called garage paradox. We consider a car and a
garage that have both length l at rest. The garage has a front (F) and a back (B)
door. It is constructed in such a way, that it opens both doors when the front of
the car arrives at the front door, closes both doors, if the back of the car reaches the
front-door and opens both doors again, when the car starts leaving the garage (ie.
the front of the car arrives at the back-door). From the point of view of the garage
the car is length-contracted and nicely fits into the garage. From the point of view of
the car, though, the garage is length-contracted and the car will not fit, but instead
will be destroyed by the doors. What really happens?
Hint: Draw a spacetime diagram in which the garage is at rest. What is the order in
which the events appear for both observers?

Let us assume that in our two dimensional spacetime, an observer sees three events, A-B
and C, in the order ABC; There exists a second observer that sees them in order CBA.

d) In two-dimensional (1+1) Minkowski space, can there be a third observer for whom
the events appear in order ACB? Argue for your answer, for example by drawing a
spacetime diagram.

e) Does this carry over to higher-dimensional Minkowski space, let’s say our beloved
4d?
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C.2 The Lorentz group
We consider four-dimensional Minkowski space R1,3, which is R4 equipped with the Minkowski
metric η. This is a symmetric, non-degenerate bilinear form η : R4 × R4 −→ R defined by

η(eµ, eν) ≡ ηµν =

{
−1 for µ = ν = 0

+1 for µ = ν = 1, 2, 3
(1)

for the standard orthonormal basis {e0, e1, e2, e3} on R4. Using linearity we then find

η(x, y) = xt · η̃ · y for x, y ∈ R1,3, (2)

where η̃ is a matrix with entries ηµν . From now, we identify η̃ and η with each other and
do not distinguish between them.
For x, y ∈ R1,3 we write x·y = η(x, y) and x2 = x·x. The postulates of special relativity im-
ply that transformations Λ relating two inertial frames, so called Lorentz transformations,
preserve the spacetime distance, i.e.

(x− y)2 = (Λ(x− y))2 for all x, y ∈ R1,3 . (3)

This leads to the definition of the Lorentz group

O(1, 3) = {Λ ∈ GL(4,R) |ΛtηΛ = η} . (4)

a) Show that Λ ∈ O(1, 3) indeed fulfills eq. (3).

b) Show that O(1, 3) indeed is a group.

c) Show that ΛtηΛ = η written in components reads ηρσ Λρ
µ Λσ

ν = ηµν .

d) Embed the group of three-dimensional rotations into O(1, 3).

e) Show that |Λ0
0| ≥ 1 and that | det Λ| = 1. With this argue that the Lorentz group

consists of four branches (which are not continuously connected to each other). Hint:
Use det(1 + ελ) = 1 + ε trλ+O(ε2).

f) Show that the subset SO+(1, 3) = {Λ ∈ O(1, 3) | det Λ = 1 , Λ0
0 ≥ 1} forms a

subgroup of O(1, 3), called the proper orthochronous Lorentz group.

g) Identify the Lorentz transformations for time and parity reversal and relate them to
the respective branches.

Consider two inertial frames, K and K ′. When K ′ moves in K with velocity v in positive
x1 direction, the Lorentz transformation from K to K ′ is (c = 1)

Λx1(v) =


γ −γ · v 0 0

−γ · v γ 0 0
0 0 1 0
0 0 0 1

 (5)

Transformation of this type are called boosts. We introduce the rapidity φ by v = tanh φ.

h) Rewrite Λx1(v) from eq. (5) in terms of the rapidity.

i) Consider two succsessive boost, both in the x1 direction but with different velocities.
Find the rapidity of the composite boost. Deduce the relativistic rule for addition of
velocities.
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