Exercises on General Relativity and Cosmology

Dr. Stefan Förste, Bardia Najjari

```
http://www.th.physik.uni-bonn.de/people/bardia/GRCss19/GR.html
```


-Exercise One-

Due on April 10

H 1 Field Theory: The Example of Classical Electrodynamics

In this exercise we consider the field theoretical formulation of classical electrodynamics. The electromagnetic field is described in terms of a vector field

$$
\begin{equation*}
A: \mathbb{R}^{1,3} \longrightarrow \mathbb{R}^{1,3}, \tag{1}
\end{equation*}
$$

with components A^{μ}. From these components, we can build the field strength tensor F, via

$$
\begin{equation*}
F_{\mu \nu}=\frac{\partial}{\partial x^{\mu}} A_{\nu}-\frac{\partial}{\partial x^{\nu}} A_{\mu} . \tag{2}
\end{equation*}
$$

The particles of mass m_{i} and charge q_{i} are described by their trajectories,

$$
\begin{align*}
x_{i}: I_{k} \subset \mathbb{R} & \longrightarrow \mathbb{R}^{1,3} \text { for } i=1, \ldots, N=\text { number of particles } \tag{3}\\
\sigma_{i} & \longmapsto x_{i}\left(\sigma_{i}\right), \tag{4}
\end{align*}
$$

For each particle, then σ is an arbitrary parameter used to parameterize its trajectory, a specific point on the trajectory curve then corresponds to coordinates x^{μ}. Written in coordinates, the total action is

$$
\begin{align*}
S\left[x_{i}, A\right]= & -\sum_{i=1}^{N} \int_{I_{k}} \mathrm{~d} \sigma_{i}\left(m_{i} \sqrt{-\eta_{\alpha \beta} \dot{x}_{i}{ }^{\alpha}\left(\sigma_{i}\right) \dot{x}_{i}{ }^{\beta}\left(\sigma_{i}\right)}-q_{i} A_{\alpha}\left(x_{i}\left(\sigma_{i}\right)\right) \dot{x}_{i}{ }^{\alpha}\right) \tag{5}\\
& -\frac{1}{4} \int_{\mathbb{R}^{1,3}} \mathrm{~d}^{4} x F_{\alpha \beta}(x) F^{\alpha \beta}(x), \tag{6}
\end{align*}
$$

where $\dot{x}_{i}=\frac{\mathrm{d}}{\mathrm{d} \sigma_{i}} x_{i}$ and integration on Minkowski space is the same as on \mathbb{R}^{4}.
a) Shortly comment on the significance of each term in S.
b) Take the variation of S with respect to x_{i}^{μ} in order to derive the Einstein-Lorentz equation

$$
\begin{equation*}
m_{i} \frac{\mathrm{~d}}{\mathrm{~d} \sigma_{i}} \frac{\dot{x}_{i}{ }^{\mu}\left(\sigma_{i}\right)}{\sqrt{-\eta_{\alpha \beta} \dot{x}_{i}^{\alpha}\left(\sigma_{i}\right) \dot{x}_{i}{ }^{\beta}\left(\sigma_{i}\right)}}=q_{i} F_{\nu}^{\mu}\left(x_{i}\left(\sigma_{i}\right)\right) \dot{x}_{i}{ }^{\nu} . \tag{7}
\end{equation*}
$$

c) Rewrite the second term in S, the term where q_{i} appears, in terms of the chargecurrent density
(1 point)

$$
\begin{equation*}
j^{\mu}(x)=\sum_{i=1}^{N} q_{i} \int \mathrm{~d} \sigma_{i} \delta^{(4)}\left(x-x_{i}\left(\sigma_{i}\right)\right) \dot{x}_{i}^{\mu}\left(\sigma_{i}\right) \tag{8}
\end{equation*}
$$

d) Take the variation of S with respect to A_{μ} to derive the inhomogenous Maxwell's equations
(2 points)

$$
\begin{equation*}
\frac{\partial}{\partial x^{\mu}} F^{\nu \mu}(x)=j^{\nu}(x) \tag{9}
\end{equation*}
$$

e) Use the definition of the field strength tensor, eq. (2), to show the homogenous Maxwell's equations
(2 points)

$$
\begin{equation*}
\frac{\partial}{\partial x^{\alpha}} F_{\mu \nu}+\frac{\partial}{\partial x^{\mu}} F_{\nu \alpha}+\frac{\partial}{\partial x^{\nu}} F_{\alpha \mu}=0 \tag{10}
\end{equation*}
$$

Now take $A^{\mu}=(\phi, \vec{A})$ with ϕ and \vec{A} such that $\vec{B}=\operatorname{rot} \vec{A}$ and $\vec{E}=-\operatorname{grad} \phi-\dot{\vec{A}}$. Further, $j^{\mu}=(\rho, \vec{j})$ with the charge-density ρ and current-density \vec{j}.
f) Express the components of the field strength tensor, $F_{\alpha \beta}$, in terms of the components of the electric and magnetic field, \vec{E} and \vec{B}.
g) Show that eq. (9) indeed gives the inhomogenous Maxwell's equations: (2 points)

$$
\begin{equation*}
\operatorname{div} \vec{E}=\rho, \quad \operatorname{rot} \vec{B}-\dot{\vec{E}}=\vec{j} \tag{11}
\end{equation*}
$$

h) Show that eq. (10) indeed gives the homogenous Maxwell's equations:

$$
\begin{equation*}
\operatorname{div} \vec{B}=0, \quad \operatorname{rot} \vec{E}+\dot{\vec{B}}=0 \tag{12}
\end{equation*}
$$

i) Parameterise eq. (7) by time, i.e. $\sigma=x^{0}=t$, and show that it reduces to (2 points)

$$
\begin{equation*}
m \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\vec{v}}{\sqrt{1-v^{2}}}=q(\vec{E}+\vec{v} \times \vec{B}) \tag{13}
\end{equation*}
$$

