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This sheet is gonna be (even ;))somewhat longer than the usual ones; you might not want to leave it off for the very end.

After developing the formalism and machinery we need in GR, and as you might expect, our
job from here on will be applying this hard earned formalism to cases of special interest. You
have already started out on that in the lecture by looking at the Schwarzschild solution for the
metric; then you went on to apply that metric to the case of planetary motion. In this exercise
we would like to work in the same direction; use our knowledge of GR to look at specific systems.
We will be looking at three cases of different scales:

� An everyday, familiar satellite floating around the earth.

� A ray of light, passing an object of astrophysical size.

� And finally, gravitational waves propagating through spacetime.

We will only start on the last topic, and we’ll pick up the rest on the next sheet.

H10.1 Perks of living on the ISS (8 points)
A good approximation to the metric in the vicinity of the surface of the Earth is

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)dr2 + r2(dθ2 + sin2 θdϕ2) , (1)

where

Φ = −GM
r

(2)

may be thought of as the familiar Newtonian gravitational potential. Here G is Newton’s
constant and M is the mass of the earth. For this problem Φ may be assumed to be small.(Can
you then tell how you get to this metric from the Schwarzschild solution?)

a) Imagine a clock on the surface of the Earth at distance R1 from the Earth’s center, and
another clock on a tall building at distance R2 from the Earth’s center. Calculate the
time elapsed on each clock as a function of the coordinate time t. Which clock moves
faster? (3 points)

b) Solve for a geodesic corresponding to a circular orbit around the equator of the Earth
(θ = π/2). What is dφ/dt? (2 points)
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c) How much proper time elapses while a satellite at radius R1 (skimming along the surface
of the earth, neglecting air resistance) completes one orbit? You can work to first order
in Φ. Plug in the actual numbers for the radius of the Earth and so on (don’t forget to
restore the speed of light) to get an answer in seconds. How does this number compare
to the proper time elapsed on the clock stationary on the surface? (3 points)

H10.2 Deflection of light (12 points)
In the lecture, you were introduced to the calculation of the deflection a freely propagating
light ray, around a spherically symmetric mass. In this exercise, we would like to do the same
calculation in more detail.
For a spherical symmetric and stationary mass distribution of mass M , the external background
metric is chosen to be the Schwarzschild metric

ds2 = −A(r)dt2 +B(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (3)

where

A(r) =

(
1− 2GM

r

)
, B(r) =

(
1− 2GM

r

)−1
,

r is the distance to the center of mass.

a) Keeping A(r) and B(r) general for the moment, write down the geodesic equations.
(2 points)

b) We can use the spherical symmetry to put θ = π
2 . Integrate the geodesic equations suitably

to get

dt

dλ
=

1

A(r)
, r2

dϕ

dλ
= J = const. , B(r)

(
dr

dλ

)2

+
J2

r2
− 1

A(r)
= −E = const. ,

where λ is the parameter along the worldline.
(this should also remind you of Killing vectors.) (2 points)

c) Show that dτ2 = Edλ2. What does this impose on the sign of E, if one considers photons
or matter to travel on the geodesic respectively? (1 point)

d) Eliminate λ from the integrals of motion obtained in part (b) to obtain a direct relation
between r and ϕ. Show that

ϕ = ±
∫ √

B(r)dr

r2
√

1
A(r)J2 − E

J2 − 1
r2

. (4)

(2 points)

Now consider a photon approaching the central mass from infinity with impact parameter b(see
figure 1). Let r0 be the minimum radial coordinate of the geodesic(minimum distance to the
center of mass).
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Figure 1: Deflection of a photon approaching a central mass with impact parameter b, ∆ϕ =
2ϕ(r0)− π.

e) Determine E and J in terms of r0. (1 point)

f) Show that (4) reduces to

ϕ(r) =

∫ ∞
r

√
B(r′)√

r′2

r20

A(r0)
A(r′) − 1

dr′

r′
. (5)

(1 point)

g) Use (5) and the approximations for A(r) and B(r) in the Newtonian limit,
i.e. 2GM/r � 1, to calculate the deflection angle ∆ϕ. (3 points)
Hint: Show, that to lowest order in 2GM/r,

r2

r20

A(r0)

A(r)
− 1 =

[
r2

r20
− 1

] [
1− 2GMr

r0(r + r0)

]
.

The following integrals may be useful∫
dx

x
√
x2 − a2

=
1

a
arccos

a

x
,

∫
dx

x2
√
x2 − a2

=

√
x2 − a2
a2x

,

∫
dx

(x+ a)
√
x2 − a2

=

√
x2 − a2
a(x+ a)

.

H10.3 Gravitational waves in Vacuum (20 points)
In this exercise we will start getting away from the static solutions of GR; you’ve already learned
in the lecture that the weak limit of static weak GR reproduces the Newtonian gravity. Here
we would specifically like to look at the propagation of weak gravitational waves.
Before diving into the calculations, let us look ahead and think what we will have to do. The
governing equation of motion is definitely the Einstein equations; non-linear and difficult to solve
generically. But since we are interested in weak gravity regime, we will look for a linearised
version, and try to deal with that.
Besides simplifying the equations by making them linear, there is another issue we expect we will
need to address; gauge fixing. If you have had dealings with field theories before(electrodynamics
is an example you have definitely seen.), you know that you will need to deal with the gauge
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freedom(or rather gauge redundancies) of the theory. We have basically designed the GR
formalism with a huge deal of redundancies; we asked for invariance under general coordinate
transformations; and at some point we will need to address that as well. To make a perturbative
description of gravity, consider a coordinate system (U, x) of the spacetime manifold M , in which
the metric g takes the form gµν(x)dxµdxν with

gµν = ηµν + hµν (6)

where η denotes the Minkowski1 flat metric. And let us limit our interest in a coordinate system
where the weak gravity regime translates to ||hµν || � 1.2. We would also like this smallness of
h to be true in a region so that ||∂σhµν || � 1 as well.
We will then work up to the first order in h in our calculations.

a) To begin, show that
gµν = ηµν − hµν (7)

(1 point)

b) Show next, that the Christoffel symbols read

Γρµν =
1

2
ηρλ(∂µhνλ + ∂νhλµ − ∂λhµν) . (8)

(1 point)

c) Show then that to the order we are working in

Rµν =
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν) , (9)

with h = ηµνhµν = hµµ, and � being the D’Alembertian from flat space, � = −∂2t + ∂2x +
∂2y + ∂2z . (2 points)

d) Show that this can be cast into

Rµν =
1

2
(∂µ∂

λh̄λν + ∂ν∂
λh̄λµ −�hµν) , (10)

with h̄µν = hµν − 1
2hηµν , being the trace-reversed perturbation. (2 points)

The next step is to deal with the gauge freedom corresponding to coordinate transformations.
Assume we make a nice coordinate transformation, such that xµ → yµ(x) = xµ + εµ(x) with
||εµ|| � 1 and ||∂σεµ|| � 1.

e) Start with the transformation of the metric g and show that

gµν(y) = ηµν + hµν(y)− ∂µεν(y)− ∂νεµ(y). (11)

(2 points)

1One can/should also consider cases where the background metric is not that of flat Minkowski; then you would
be looking at the propagation of gravitational waves on a non-trivial background. Here, we consider the nicer
case of flat background spacetime, as it is more relevant, and the vanishing of curvature components makes
our calculations shorter and more relatable.

2This look like sort of limiting out choice of coordinate systems, but let us bear with that.
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f) In the next step, show that equation 11 means that h̄ transforms as

h̄µν → h̄µν − 2∂(µεν) + ∂λε
ληµν . (12)

(2 points)

g) We can now go back to part d) and notice that if

∂µh̄µν = 0, (13)

there is a good deal of simplification in the Ricci tensor. This is an example of a gauge-
fixing choice; called the Lorenz gauge. Fixing the gauge is equivalent to finding a specific
coordinate transformation εµ. Show that for a given perturbation of the metric h, making
a coordinate transformation by ε with

�εν = ∂µh̄
µν (14)

will put us in the Lorenz gauge. (1 point)

h) Once in the Lorenz gauge, show that the linearised Einstein equation reads

�h̄µν = −16πGTµν . (15)

(2 points)

At this point, we can specialize to the case of the vacuum solution; that is, we are not worrying
about how a gravitational wave has come about, but rather would like to know how such an
existing wave would propagate.

i) Verify that the plane wave

h̄µν(x) = aµνexp (i(kλxλ + φ)) (16)

with constant k, constant symmetric a, and constant phase φ, is indeed a solution to the
vacuum linearised Einstein equation, if k is light-like. (2 points)

The polarization tensor, is where the information about the configuration and degrees of freedom
of gravitational waves lies. This should remind you of the u, v spinors in the Dirac theory, or
the εµ polarization vectors in a vector boson theory if you’ve had dealings with those. Anyway,
let us see what we know about a:

j) Remember that we are in the Lorenz gauge, so equation 13 holds. Show that this implies
a transverse polarization tensor, i.e.

kµa
µν = 0. (17)

(1 point)

Is that it? is that all the constraints on the polarization? Remember that we got our first
constraint on the polarization by imposing the Lorenz gauge. But there is still some fight left in
the coordinate transformations. Looking back at part g), it is evident that if we make another
coordinate transformation with parameters ε′, with �ε′ν = 0, we will still be in the Lorenz
gauge.
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k) Let us say that the coordinate transformation with ε′µ = bµe
ikσxσ3, with constant b, is one

such transformation. Use what you know about the transformation of h̄ from equation
12, to argue that this is equivalent to a transformation of the a tensor as

aµν → aµν − ikµbν − ikνbµ + iηµνkλb
λ . (18)

(4 points)

Now you have done enough algebra; so we can go a bit easier from here. It can be shown4 that
one can use this transformation to require that

aµµ = 0 and a0ν = 0. (19)

Together, these are four new5 constraints.6

We are now ready to finally do the physics. We started with a plane wave, with a symmetric
polarization tensor a; that would mean we have 4(4 + 1)/2 = 10 degrees of freedom to begin
with. Imposing the Lorenz gauge in equation 17 kills four of these, leaving us with 6 dofs. The
last bit of gymnastics in k) takes away four more, and then we are left with two for sure. You
can play with these two degrees of freedom to define (left/right) or (+/×) polarizations for the
wave7.

3You need not worry about the complex parameter appearing.
4See for example Carroll’s notes
5They might seem five, right? 1 from the trace condition + four from the a0ν , four of them together with the

transverse condition we had before, imply the fifth; so there are four independent new constraints.
6Note that when we establish that h̄ = aµ

µ = 0, then that means h = −h̄ = 0, and so that hµν = h̄µν .
7It is nice to look at some of the animated gifs, visualizing the passing of a gravitational wave; there you can

better relate to these two polarizations.
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