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— EXERCISE ELEVEN —

Due June 26"

This last exercise sheet contains three problems; the last two are bonus problems, put there to
help in case someone needs some more points to be admitted to the exam. That, however, does
Not mean they are irrelevant for, or out of the scope of the course or the exam.

H 11.1 Metric for the charged black hole (25 points)
In the lecture you have found the Schwarzschild metric which is the vacuum solution to Ein-
stein’s equations for a spherically symmetric, static source. Here we generalize this discussion
to the case in which the source is charged. So there is no more vacuum out there, but rather
the EM field. It is still static and spherically symmetric, so we are more than welcome to make
the same ansatz for the form of the metric as for the Schwarzschild solution,

ds? = —e2*Mqt? 4 2P dr? 4 12(d6? + sin® 0d¢?) . (1)

The non-vanishing components of the Ricci tensor are given by
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Due to the presence of charge, however, we now expect a non-vanishing electromagnetic field
strength tensor F,,. Let us make the ansatz

Ftr:_ rt:f(r)a

3
FQ¢Z—F¢9:g(T’)Sin0, ( )

with all other components vanishing.

a) Calculate the energy momentum tensor

1 1
T = i (FupFVp - 4gMVFPUFpU> ) (4)
associated to the ansatz we made for the field strength tensor F},,. Argue that this energy
momentum tensor is indeed compatible with the spherically symmetric, static ansatz.

(4 points)



b)

Solve Maxwell’s equations which for a curved spacetime read

9"'VuFue =0,V F,; =0, (5)
to obtain

gy =1, )= 2, (6)

with constants ¢; and cs.
(4 points)

¢) Show that the energy momentum tensor calculated above is traceless.
(3 points)
With a traceless EMT, we thus have to solve

R, = KT}, . (7)

d)

Take a suitable linear combination of the ¢t and rr component of (7) to derive the relation
eXoth) =1, (8)

Note: Strictly speaking you will find e2(@+t8) = const. This constant can again be rescaled
to one without loss of generality.

(2 points)
Consider the remaining equations to find the differential equations
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(4 points)
Solve the differential equations (9) to find the Reissner-Nordstrom metric
ds® = — Adt? + A7 dr® 4 r%(d6? + sin®? 0d¢?),  with
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with another constant cs.

Hint: The easy way would be to plug in the ansatz and determine ¢y, co and c3. For another
small simplification you can introduce A = €2 and rewrite the differential equations in
terms of A. (4 points)

Remember solving for the Schwarzschild metric; at this point, when we were left with
constants in the solution, we looked at the weak-field limit, to relate the constants to a
well-known parameter, the mass. In the same spirit, relate the integration constants ci, co
and c3 to the mass, electric charge and magnetic charge of the black hole. To this end
analyse the asymptotics of the Reissner-Nordstrom metric and the electromagnetic field
F.



Hint:Note that the radial component of the magnetic field is given by B" = 601‘“’FW, with

P = \/%—gép"‘“’ as introduced early on in the lecture. For a magnetic monopole of charge

p the radial component behaves as B (r) = p/r?.
(4 points)

H 11.2 Kruskal-Szekres coordinates and apparent singularity (25 Bonus points)
In the lecture, the Schwarzschild solution was discussed along with some relevant phenomena,
including the appearance of an event horizon; you saw that there was an apparent singularity as
one approaches the Schwarzschild radius. Later, you dismissed the chances of anything singular
happening at the Schwarzschild radius, and stated that the singularity was a mere coordinate
effect(hence the name coordinate singularity) and that spacetime is in fact pretty regular at the
Schwarzschild radius, if one chooses a better coordinate system. That is what we would like to
do in this exercise; find a set of coordinates in which this apparent singularity is removed.

a) To start, show that the Schwarzschild metric in (11) does show a singularity at r = 2GM.

2GM 2GM\ !
ds? — — <1 _ ) dt? + (1 - G) dr? + r2dQ2? . (11)
T
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b) Show that one can use the tortoise! coordinates(r*) defined as?

* _ o
r —r+2GM1n<2GM 1) . (12)
to bring the Schwarzschild metric to the form
2GM
ds® = (1 _ > (—dt2 n dr*z) +r2d0? (13)
T

3 That is already rewarding, as it removes part of the funny behaviour of the metric we
had before; namely, it keeps the light-cones from closing up in this new coordinate as is
apparent from the form of the metric 13. But let us work further on; we would for one
thing like to have the peculiar point r = 2G M somewhere at hand in our coordinates, and
not infinitely far away as in here with r* — oo as r — 2G M.

c) Let us define the FEddington-Finkelstein coordinates, being light-cone coordinates con-
structed using the tortoise coordinate, as

t+r*
= t—7r*. (14)
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Show then, that one can use these coordinates to write the metric as

ds* = % <1 — QCiM> (dudv + dodi) + r2dQ? . (15)

! Apparently after the thought experiment of Achilles and the tortoise.

2You need not worry about the the coordinates being defined for r > 2GM; as that is the region we will be
involved with.

3The presence of r in the d part is not the result of a typo, we simply decide to that part of the metric be, as
it is pretty harmless; we all making all the effort to get rid of the apparent singularity in the other parts of
the metric.




d) One last step is to introduce the Kruskal-Szekres coordinates, by
- 6ﬂ/~4GM
'U, — €—U/4GM , (16)

e) Show that one can express these new coordinates in terms of our original? coordinates, as
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f) Show that in terms of these latest new coordinates the metric becomes

- 16G3M3 e—r/ZGM

ds® = (du'dv’ + dv'du’) 4+ r2dQ? . (18)
r
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H 11.3 Gravitational waves from a spinning rod (10 Bonus points)

Consider a conducting metal rod of length L and mass density p, spinning with frequency w.

a) Calculate the time-dependent part of the quadrupole moment ¢;; and the luminosity

1 dqu" d3qij
L=—= J : 19
5 < a3 dt3 (19)
(5 points)
Remember you had to start by finding the T element, and then calculate the moment

from there.

b) Calculate the charge induced in the rod due to the centrifugal force. An order of magnitude
approximation is sufficient. Will the rotation generate electromagnetic dipole radiation?
(8 points)

c) Calculate the luminosity of the electromagnetic quadrupole radiation. What is the ratio
between the power of electromagnetic and gravitational radiation for p = 10g/cm® and

w = 1kHz?
(2 points)

4Do not get me wrong, there is nothing original about those coordinates, we just happened to start working
with them when we started.

SNow all these changes of coordinates might seem random; I tried to keep the exercise short; you can look for
a motivation for each of the changes of coordinates in for example Carroll or Hirata lecture notes for the
Kruskal coordinates.



