Exercises on General Relativity and Cosmology
 Dr. Stefan Förste, Bardia Najjari

http://www.th.physik.uni-bonn.de/people/bardia/GRCss19/GR.html
-Exercise Three-

Due April 24 ${ }^{\text {th }}$

H 3.1 EMT for a Perfect Fluid

(10 points)
First, we would like to consider the energy-momentum tensor of a perfect fluid. A comoving observer will, by definition, see his surroundings as isotropic. In this frame the energymomentum tensor is given by

$$
\left(\tilde{T}^{\mu \nu}\right)=\left(\begin{array}{llll}
\rho & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right),
$$

where ρ is the density and p the pressure of the fluid.
a) Calculate the components of energy-momentum tensor $T^{\mu \nu}$ for an observer at rest. Assume the comoving observer's velocity to be \vec{v}.
b) Show that $T^{\mu \nu}$ can also be written as

$$
T^{\mu \nu}=(p+\rho) U^{\mu} U^{\nu}+p \eta^{\mu \nu},
$$

where U^{μ} are the components of the four-velocity of the fluid.
c) From the nonrelativistic limit of the conservation of the energy momentum tensor, $\partial_{\mu} T^{\mu \nu}$, deduce Euler's equations

$$
\begin{aligned}
\partial_{t} \rho+\vec{\nabla} \cdot(\rho \vec{v}) & =0, \\
\rho\left[\partial_{t} \vec{v}+(\vec{v} \cdot \vec{\nabla}) \vec{v}\right] & =-\vec{\nabla} p .
\end{aligned}
$$

Hint: The nonrelativistic limit is given by $\left(U^{\mu}\right)=\left(1, v^{i}\right),\left|v^{i}\right| \ll 1, p \ll \rho$. Project the equation into pieces along and orthogonal to the four-velocity by contraction with U_{ν} and $P^{\sigma}{ }_{\nu}=\delta_{\nu}^{\sigma}+U^{\sigma} U_{\nu}$ respectively.

In the lecture the concept of manifolds has been introduced. This exercise is devoted to building up some intuition for these objects. To this end, let us first recall the definition: A differentiable manifold of dimension n is a topological space M, such that the space can be covered with a set of open sets $\left\{U_{\alpha}\right\}$ and for every α we have a diffeomorphism ${ }^{11}$ $h_{\alpha}: U_{\alpha} \longrightarrow V_{\alpha}$ to an open set $\overline{V_{\alpha}} \subset \mathbb{R}^{n}$. A pair $\left(U_{\alpha}, h_{\alpha}\right)$ is called a chart, labelled α, and a set of charts covering M is called an atlas. Further, for every pair of charts (α, β) such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ the transition function $h_{\alpha \beta} \equiv h_{\alpha} \circ h_{\beta}^{-1}: h_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \longrightarrow h_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is required to be a diffeomorphism.
To get acquainted to this possibly new language, let us look at our jolly good \mathbb{R}^{n} first.
a) Consider \mathbb{R}^{n} itself as a topological space and explicitly construct an atlas to show that it is a manifold.
(1 point)
Hint: One chart is enough, but feel free to try using more charts.
This result is not surprising, since manifolds are constructed such that they locally look like the \mathbb{R}^{n}; and of course, so does \mathbb{R}^{n}.
Let us go a step further. A manifold is called topologically trivial if it can be continuously shrunk to a point, an example is \mathbb{R}^{n}. One may think that this property of \mathbb{R}^{n}, being topologically trivial, allowed for covering it with one chart only.
b) Consider the infinitely long cyclinder M given by its embedding in \mathbb{R}^{3},

$$
\begin{equation*}
M=\{(R \cos \phi, R \sin \phi, t) \mid \phi \in[0,2 \pi), t \in(-\infty, \infty), R>0\} \tag{1}
\end{equation*}
$$

Although M is topologically non-trivial - it can be shrunk to a circle but not to a point - it can be covered with a single chart only. Construct such a chart explicitly. What is the dimension of this manifold, and how is this different from the dimension of the embedding space?
(3 points)

Hint: Think about the punctured complex plane, $\mathbb{C} \backslash\{0\}$.
c) Now consider a torus given by its embedding in \mathbb{R}^{3},

$$
\begin{equation*}
T=\{((R+r \cos \theta) \cos \phi,(R+r \cos \theta) \sin \phi, r \sin \theta) \mid \theta, \phi \in[0,2 \pi), R>r>0\} . \tag{2}
\end{equation*}
$$

Explicitly construct an atlas to show that T is a manifold. What is the dimension of this manifold?
(3 points)

As many other objects, there is a notion of combining manifolds; the direct product of two manifolds, $M_{1,2}$ of dimensions $d_{1,1}$ is a manifold. Intuitively, the direct product amounts to putting an instance of manifold M_{1} at every point on M_{2}.
d) Convince yourself(and preferably also your tutor) that the dimension of the resulting product manifold will be $d_{1}+d_{2}$.
(1 point)

[^0]e) A nice example of this product might be writing the infinite cylinder we had from before as $M=\mathbb{R} \times S$, where S is just our familiar circle. The circle, is in fact a differentiable manifold. To be consistent, let us define the circle by its embedding in \mathbb{R}^{2} as
\[

$$
\begin{equation*}
S=\{(R \cos \phi, R \sin \phi) \mid \phi \in[0,2 \pi), R>0\} . \tag{3}
\end{equation*}
$$

\]

What is the dimension of the circle as a manifold. Check that our assumption about the dimension of the product manifold works. Explicitly construct an atlas for the circle. Can you do this atlas with a single chart?
Hint: Remember that the keyword "open" in our definitions above.

The lesson is that a higher dimension for the manifold, does not necessarily mean we need more charts in the atlas.
The feature that made the torus topologically non-trivial is called the genus, and the torus was of genus one. Another nice example, is provided by the sphere. The sphere, defined by its \mathbb{R}^{3} embedding

$$
\begin{equation*}
S p h=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1, x, y, z \in \mathbb{R}\right\} . \tag{4}
\end{equation*}
$$

is a differentiable manifold of genus zero.
f) What is the dimension of this manifold? Explicitly construct an atlas to show that the sphere is indeed a manifold. How many charts, at least, do you need? Compare this with the case of the torus.
(4 points)

[^0]: ${ }^{1} \mathrm{~A}$ diffeomorphism is a homeomorphism with the additional property that it and its inverse are continuously differentiable.

