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C4.1 Explicit Calculation on a Simple Manifold
Consider R3 as a manifold with flat Euclidean metric and coordinates {x, y, z}.

a) A particle moves along a parameterized curve given by

x(λ) = cosλ , y(λ) = sinλ , z(λ) = λ .

Express the path of the curve in spherical polar coordiantes.

b) Calculate the components of the tangent vector to the curve in both the Cartesian
and spherical polar coordinate systems.

Now consider prolate spheroidal coordinates, which can be used to simplify the Kepler
problem in classical mechanics. They are given by

x = sinhχ sin θ cosφ

y = sinhχ sin θ sinφ

z = coshχ cos θ .

Consider the plane y = 0.

c) What is the coordinate transformation matrix ∂xµ

∂x′ν
relating (x, z) to (χ, θ)?

d) What does the line element ds2 look like in prolate spheroidal coordinates?

C4.2 Example of Induced Metric
In the lecture, you started learning about the metric tensor. A manifold M can be given
an additional structure by endowing it with a metric tensor, which provides a natural
generalization of the scalar product between two vectors in Rn. In terms of the language
of tangent and cotangent spaces, a metric tensor g is a smooth tensor field of type (0, 2)
on M that is symmetric and non-degenerate. This means:

� For every p ∈M there is a tensor gp of type (0, 2) on V = TpM

� for every u, v ∈ TpM the equality gp(u, v) = gp(v, u) holds

� if gp(u, v) = 0 for every v ∈ TpM then u = 0
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� the map p 7−→ gp is continuous.

As in the case of the vectors, where you could write a vector in terms of its components, a
tensor -and in this example the metric tensor- can be expanded in local coordinates {xµ}
on M as

g = gµν dxµ ⊗ dxν (1)

in terms of smooth functions gµν . A trivial example is that of Rn equipped with the
standard euclidean metric, which is just what we call Rn; another example is the same Rn

manifold again, this time equipped with the Minkowski metric, resulting in the familiar
n-dimensional Minkowski space R1,n−1. This shows that one and the same manifold can
be equipped with different metrics, by which it is made into different objects.
Another important concept is that of the pullback. Consider a manifold M equipped with
a metric g and a second manifold N . If we further have a smooth map φ : N −→ M we
can use this map to pull g back onto N . This gives the so called induced metric on N ,
which is denoted as φ∗g. With g as in eq. (1) and with local coordinates {yµ} on N the
induced metric locally reads

φ∗g =

[
gαβ

(
∂φα

∂yµ

)(
∂φβ

∂yν

)]
dyµ ⊗ dyν . (2)

a) Consider the two-sphere S2 embedded in R3,

S2 = {R(cosφ sin θ, sinφ sin θ, cos θ) |φ ∈ [0, 2π), θ ∈ [0, π), R > 0}. (3)

Use the inclusion map we used for the embedding

ι : S2 −→ R3

(θ, φ) 7−→ R(cosφ sin θ, sinφ sin θ, cos θ)
(4)

to calculate the induced metric on S2.

b) do the same for the embedding of T 2 in R3. Use the corresponding inclusion map to
calculate the induced metric on T 2. Remember the embedding was that of

T 2 = {((R+r cos θ) cosφ, (R+r cos θ) sinφ, r sin θ) | θ, φ ∈ [0, 2π), R > r > 0} . (5)

c) In cosmology the so called de Sitter space will be of importance. This space is,
can be recognized by its embedding, as cut out of five-dimensional Minkowski space
R1,4 — with coordinates u,w, x, y, z, with u being the timelike coordinate— by the
hyperboloid equation

− u2 + w2 + x2 + y2 + z2 = α2, α ∈ R . (6)

On de Sitter space we introduce coordinates t, χ, θ, φ and embed it in R1,4 by

u = α sinh (t/α)

w = α cosh (t/α) cosχ

x = α cosh (t/α) sinχ cos θ

y = α cosh (t/α) sinχ sin θ cosφ

z = α cosh (t/α) sinχ sin θ sinφ .

(7)

Calculate the induced metric on de Sitter space.
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