Exercises on General Relativity and Cosmology

Dr. Stefan Förste, Bardia Najjari
http://www.th.physik.uni-bonn.de/people/bardia/GRCss19/GR.html

-Exercise Five :)-
Due May $8^{\text {th }}$

H5.1 Vectors and Vector fields

In the lecture, we introduced the directional derivatives along curves passing through a point P on the manifold, as the tangent space T_{P}. We would like to first confirm that the directional derivative does indeed form a vector space.
To that end; we should check that if $\frac{d}{d \lambda}$ and $\frac{d}{d \gamma}$ are two directional derivatives along two curves parameterized by λ and γ, then the combined operator $\mathcal{O}=a \frac{d}{d \lambda}+b \frac{d}{d \gamma}$, where a and b are constant numbers, is also gonna be in the same space. That is to say that \mathcal{O} is a directional derivative. For an operator to be a well-defined derivative(derivation), it should satisfy

Linearity: $\quad X(\alpha f+\beta g)=\alpha X(f)+\beta X(g) \quad$ with $\quad \alpha, \beta \in \mathbb{R}, f, g \in C^{\infty}$
Leibniz rule: $\quad X(f \cdot g)=f \cdot X(g)+g \cdot X(f) \quad$ with $\quad f, g \in C^{\infty}$.
a) show by explicit calculation that \mathcal{O} is a derivative.

Let us move further with the vectors on a manifold. So far, we were working with the vector space defined at a point P on a manifold; pinning a vector space at each and every point on a manifold, we will have a vector field. Just as the vector space at point P was a map from functions to their derivative functions at the point P, a vector field maps functions to derivative functions, all over the manifold. A smooth vector field X on a manifold M fulfils the two above conditions, all over the manifold.
Given two vector fields X and Y we define a new vector field $[X, Y$], the Lie bracket or commutator of X and Y, by

$$
\begin{equation*}
[X, Y](f)=X(Y(f))-Y(X(f)) \quad \text { for } \quad f \in C^{\infty}(M) \tag{2}
\end{equation*}
$$

b) Show in two ways that $[X, Y]$ is indeed a vector field:
i) Prove that $[X, Y]$ is a derivation.
ii) Write $[X, Y]$ in terms of components and show that they transform as those of a vector field under change of coordinates.
c) What about $X Y$ or $Y X$? are these combinations of vector fields, also vector fields themselves?
d) Show that the Lie bracket is
i) skew-symmetric, $[X, Y]=-[Y, X]$, and
ii) satisfies the Jacobi identity, $[[X, Y], Z]+[[Z, X], Y]+[[Y, Z], X]=0$.
e) Consider as the manifold, \mathbb{R}^{2} equipped with some coordinates x^{1}, x^{2}. Calculate the Lie bracket of the coordinate vector fields $\partial_{1}=\frac{\partial}{\partial x^{1}}$ and $\partial_{2}=\frac{\partial}{\partial x^{2}}$.
(1 point)
f) Find an example of two nowhere-vanishing, (at each point) linearly independent vector fields in \mathbb{R}^{2} whose Lie bracket does not vanish. Note that these two vector fields provide a basis for the tangent space at each point. Can you find coordinates, under which this basis will be a coordinate basis?
(3 points)

H 5.2 Tensors and (A)symmetry

On the previous sheets, you already used the symmetry/anti-symmetry properties of tensors occasionally. We would like to do get a bit more used to tensors in that respect.
Let T be a tensor in the vector space $T^{0, k}(V)$. Given this tensor, one can then define the two related tensors.

$$
\begin{equation*}
T_{\mu_{1}, \ldots, \mu_{k}}^{s y m}:=T_{\left(\mu_{1}, \ldots, \mu_{k}\right)}=\frac{1}{k!} \sum_{\sigma \in S_{K}} T_{\mu_{\sigma_{1}}, \ldots, \mu_{\sigma_{k}}} \tag{3}
\end{equation*}
$$

is the corresponding symmetric tensor; you may be familiar with the () notation for symmetryzation, and S_{k} denotes the set of permutations of k objects. This will be a symmetric tensor, in the sense that, for example you dealt with a symmetric energy-momentum tensor on the previous sheets.
Similarly, there is another corresponding tensor

$$
\begin{equation*}
T_{\mu_{1}, \ldots, \mu_{k}}^{A s y m}:=T_{\left[\mu 1, \ldots, \mu_{k}\right]}=\frac{1}{k!} \sum_{\sigma \in S_{K}} \operatorname{sgn}(\sigma) T_{\mu_{\sigma_{1}}, \ldots, \mu_{\sigma_{k}}} \tag{4}
\end{equation*}
$$

where again [] denotes antisymmetrization, implemented by the series on the right. $\operatorname{sgn}(\sigma)$ is the sign, i.e. even/odd, of a specific permutation σ. This will be an antisymmetric tensor in the sense that the electromagnetic field strength tensor $F_{\mu \nu}$ was.
a) Let us specialize to the case $k=2$, show that $T=T^{s y m}+T^{A s y m}$.

This decomposition is often helpful, to see why, show that for two sets of tensors $X, Y \in$ $T^{0,2}, T^{2,0}$.
(1 point)
b) $X^{\text {sym }} Y^{A s y m}=0$.
c) $X Y=X^{s y m} Y^{s y m}+X^{A s y m} Y^{A s y m}$

Let us now move on to $k=3$.
d) can you decompose a tensor as $T^{\text {Asym }}+T^{s y m}$?
(2 points)

