Exercises on General Relativity and Cosmology

Dr. Stefan Förste, Bardia Najjari

http://www.th.physik.uni-bonn.de/people/bardia/GRCss19/GR.html

-EXERCISE FIVE :)-Due May 8th

H 5.1 Vectors and Vector fields

· -

 $(12 \ points)$

In the lecture, we introduced the directional derivatives along curves passing through a point P on the manifold, as the tangent space T_P . We would like to first confirm that the directional derivative does indeed form a vector space.

To that end; we should check that if $\frac{d}{d\lambda}$ and $\frac{d}{d\gamma}$ are two directional derivatives along two curves parameterized by λ and γ , then the combined operator $\mathcal{O} = a \frac{d}{d\lambda} + b \frac{d}{d\gamma}$, where a and b are constant numbers, is also gonna be in the same space. That is to say that \mathcal{O} is a directional derivative. For an operator to be a well-defined derivative(*derivation*), it should satisfy

Linearity:	$X(\alpha f + \beta g) = \alpha X(f) + \beta X(g)$	with	$\alpha,\beta\in\mathbb{R},f,g\in C^{\infty}$	(1)
Leibniz rule:	$X(f \cdot g) = f \cdot X(g) + g \cdot X(f)$	with	$f,g\in C^\infty$.	(1)

a) show by explicit calculation that \mathcal{O} is a derivative. (2 points)

Let us move further with the vectors on a manifold. So far, we were working with the vector space defined at a point P on a manifold; pinning a vector space at each and every point on a manifold, we will have a *vector field*. Just as the vector space at point P was a map from functions to their derivative functions at the point P, a vector field maps functions to derivative functions, all over the manifold. A smooth vector field X on a manifold M fulfils the two above conditions, all over the manifold.

Given two vector fields X and Y we define a new vector field [X, Y], the *Lie bracket* or *commutator* of X and Y, by

$$[X,Y](f) = X(Y(f)) - Y(X(f)) \quad \text{for} \quad f \in C^{\infty}(M).$$
(2)

b) Show in two ways that [X, Y] is indeed a vector field:

- i) Prove that [X, Y] is a derivation.
- ii) Write [X, Y] in terms of *components* and show that they transform as those of a vector field under change of coordinates.

(2 points)

- c) What about XY or YX? are these combinations of vector fields, also vector fields themselves? (2 points)
- d) Show that the Lie bracket is
 - i) skew-symmetric, [X, Y] = -[Y, X], and
 - ii) satisfies the Jacobi identity, [[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0.
- e) Consider as the manifold, \mathbb{R}^2 equipped with some coordinates x^1, x^2 . Calculate the Lie bracket of the coordinate vector fields $\partial_1 = \frac{\partial}{\partial x^1}$ and $\partial_2 = \frac{\partial}{\partial x^2}$. (1 point)
- f) Find an example of two nowhere-vanishing, (at each point) linearly independent vector fields in \mathbb{R}^2 whose Lie bracket does not vanish. Note that these two vector fields provide a basis for the tangent space at each point. Can you find coordinates, under which this basis will be a coordinate basis? (3 points)

H 5.2 Tensors and (A)symmetry

On the previous sheets, you already used the symmetry/anti-symmetry properties of tensors occasionally. We would like to do get a bit more used to tensors in that respect. Let T be a tensor in the vector space $T^{0,k}(V)$. Given this tensor, one can then define the two related tensors.

$$T^{sym}_{\mu_1,\dots,\mu_k} \coloneqq T_{(\mu_1,\dots,\mu_k)} = \frac{1}{k!} \sum_{\sigma \in S_K} T_{\mu_{\sigma_1},\dots,\mu_{\sigma_k}}$$
(3)

(2 points)

(4 points)

is the corresponding symmetric tensor; you may be familiar with the () notation for symmetry zation, and S_k denotes the set of permutations of k objects. This will be a symmetric tensor, in the sense that, for example you dealt with a symmetric energy-momentum tensor on the previous sheets.

Similarly, there is another corresponding tensor

$$T^{Asym}_{\mu_1,\dots,\mu_k} \coloneqq T_{[\mu_1,\dots,\mu_k]} = \frac{1}{k!} \sum_{\sigma \in S_K} sgn(\sigma) T_{\mu_{\sigma_1},\dots,\mu_{\sigma_k}}$$
(4)

where again [] denotes antisymmetrization, implemented by the series on the right. $sgn(\sigma)$ is the sign, i.e. even/odd, of a specific permutation σ . This will be an antisymmetric tensor in the sense that the electromagnetic field strength tensor $F_{\mu\nu}$ was.

a) Let us specialize to the case k = 2, show that $T = T^{sym} + T^{Asym}$. (1 point)

This decomposition is often helpful, to see why, show that for two sets of tensors $X, Y \in T^{0,2}, T^{2,0}$. (1 point)

b) $X^{sym}Y^{Asym} = 0.$

c) $XY = X^{sym}Y^{sym} + X^{Asym}Y^{Asym}$

Let us now move on to k = 3.

d) can you decompose a tensor as $T^{Asym} + T^{sym}$? (2 points)