Exercises on General Relativity and Cosmology

Dr. Stefan Förste, Bardia Najjari
http://www.th.physik.uni-bonn.de/people/bardia/GRCss19/GR.html

-Exercise Six-
Due May $15^{\text {th }}$

H 6.1 Connections

In the lecture you were introduced to the affine connection ∇ as a map

$$
\begin{aligned}
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) & \rightarrow \mathfrak{X}(M) \\
(X, Y) & \mapsto \nabla_{X} Y,
\end{aligned}
$$

with $\mathfrak{X}(M)$ being the space of vector fields on M. This mapping satisfies

$$
\begin{aligned}
\nabla_{X}(Y+Z) & =\nabla_{X} Y+\nabla_{X} Z \\
\nabla_{(X+Y)} Z & =\nabla_{X} Z+\nabla_{Y} Z \\
\nabla_{(f X)} Y & =f \nabla_{X} Y \\
\nabla_{X}(f Y) & =X[f] Y+f \nabla_{X} Y,
\end{aligned}
$$

where $X, Y, Z \in \mathfrak{X}(M)$, and $f: M \rightarrow \mathbb{R}$ is a smooth function. The connection components $\Gamma^{\lambda}{ }_{\nu \mu}$ are defined by ${ }^{1}$

$$
\nabla_{\partial_{\nu}} \partial_{\mu} \equiv \nabla_{\nu} \partial_{\mu}=\Gamma^{\lambda}{ }_{\nu \mu} \partial_{\lambda} .
$$

Rewriting for two vector fields $X=X^{\mu} \partial_{\mu}, Y=Y^{\mu} \partial_{\mu}$,

$$
\nabla_{X} Y=X^{\mu}\left(\frac{\partial Y^{\lambda}}{\partial x^{\mu}}+Y^{\nu} \Gamma^{\lambda}{ }_{\mu \nu}\right) \partial_{\lambda} \equiv X^{\mu}\left(\nabla_{\mu} Y\right)^{\lambda} \partial_{\lambda} .
$$

So far so well for vectors; now in order to define the action of the connection on general tensor fields, one first imposes the action of ∇_{X} on a function $f: M \rightarrow \mathbb{R}$ to be

$$
\nabla_{X} f=X[f]
$$

and then imposes the Leibniz rule, you were introduced to on previous sheets

$$
\nabla_{X}\left(T_{1} \otimes T_{2}\right)=\left(\nabla_{X} T_{1}\right) \otimes T_{2}+T_{1} \otimes\left(\nabla_{X} T_{2}\right),
$$

where $X \in \mathfrak{X}(M)$ and T_{1}, T_{2} are tensor fields of arbitrary types.

[^0]a) Use the above properties to argue
$$
\nabla_{\mu}\left(V^{\nu}\right)=\partial_{\mu} V^{\nu}+\Gamma_{\mu \lambda}^{\nu} V^{\lambda}
$$
b) Let $\omega=\omega_{\nu} \mathrm{d} x^{\nu}$ be a one-form (a covector) and $X=X^{\mu} \partial_{\mu}$ and $Y=Y^{\mu} \partial_{\mu}$ two vector fields. Use what we just asked of the connection and its action on functions, to derive the action of an affine connection ∇ on a covector ω,
$$
\left(\nabla_{X} \omega\right)_{\nu}=X^{\mu} \partial_{\mu} \omega_{\nu}-X^{\mu} \Gamma_{\mu \nu}^{\lambda} \omega_{\lambda}
$$
by looking at $\nabla_{X}(\omega Y) .{ }^{2}$
It is easy to generalize this result to tensors of arbitrary type. Let T be a (q, r) tensor. Every upper index goes with a $+\Gamma$ and every lower one with a $-\Gamma$; that is
\[

$$
\begin{aligned}
\left(\nabla_{X} T\right)^{\mu_{1} \ldots \mu_{q}}{ }_{\nu_{1} \ldots \nu_{r}}= & X^{\rho} \partial_{\rho} T^{\mu_{1} \ldots \mu_{q}}{ }_{\nu_{1} \ldots \nu_{r}}+X^{\rho} \Gamma^{\mu_{1}}{ }_{\rho \kappa} T^{\kappa \mu_{2} \ldots \mu_{q}}{ }_{\nu_{1} \ldots \nu_{r}}+\cdots+X^{\rho} \Gamma^{\mu_{q}}{ }_{\rho \kappa} T^{\mu_{1} \ldots \mu_{q-1} \kappa}{ }_{\nu_{1} \ldots \nu_{r}} \\
& -X^{\rho} \Gamma^{\kappa}{ }_{\rho \nu_{1}} T^{\mu_{1} \ldots \mu_{q}}{ }_{\kappa \nu_{2} \ldots \nu_{r}}-\cdots-X^{\rho} \Gamma^{\kappa}{ }_{\rho \nu_{r}} T^{\mu_{1} \ldots \mu_{q}}{ }_{\nu_{1} \ldots \nu_{r-1} \kappa} .
\end{aligned}
$$
\]

Remember that just a few lines above, we defined the connection components, corresponding to a set of coordinates x^{μ} by

$$
\nabla_{\mu}\left(V^{\nu}\right)=\partial_{\mu} V^{\nu}+\Gamma_{\mu \lambda}^{\nu} V^{\lambda} .
$$

It should be obvious that we could have started from a different choice of coordinates y^{α}, such that ${ }^{34}$

$$
\nabla_{\frac{\partial}{\partial y^{\beta}}}\left(\frac{\partial}{\partial y^{\alpha}}\right)=\nabla_{\partial_{\beta}} \partial_{\alpha} \equiv \nabla_{\beta} \partial_{\alpha}=\tilde{\Gamma}_{\beta \alpha}^{\gamma} \partial_{\gamma} .
$$

and so

$$
\nabla_{\beta} V^{\alpha}=\partial_{\beta} V^{\alpha}+\tilde{\Gamma}_{\beta \gamma}^{\alpha} V^{\gamma}
$$

We are interested in tensors and tensorial transformation properties, so we would like to have

$$
\nabla_{\beta} V^{\alpha}=\frac{\partial x^{\nu}}{\partial y^{\beta}} \frac{\partial y^{\alpha}}{\partial x^{\mu}} \nabla_{\nu} V^{\mu} .
$$

c) Show that this means that connection components should transform as

$$
\begin{equation*}
\tilde{\Gamma}_{\beta \alpha}^{\gamma}=\frac{\partial x^{\nu}}{\partial y^{\beta}} \frac{\partial x^{\mu}}{\partial y^{\alpha}} \frac{\partial y^{\gamma}}{\partial x^{\lambda}} \Gamma_{\nu \mu}^{\lambda}-\frac{\partial^{2} y^{\gamma}}{\partial x^{\mu} \partial x^{\nu}} \frac{\partial x^{\mu}}{\partial y^{\alpha}} \frac{\partial x^{\nu}}{\partial y^{\beta}} . \tag{3points}
\end{equation*}
$$

[^1]d) Show, by explicit calculation, that the above transformation rule for the connection components Γ, indeed makes $\nabla_{X} Y$ a vector. That is, explicitly show how $\left(\nabla_{X} Y\right)^{\nu}$ transforms.
(1.5 points)
e) Show further, that with the same object Γ, the components of
$$
\left(\nabla_{\mu} \omega\right)_{\nu}=\partial_{\mu} \omega_{\nu}-\Gamma^{\lambda}{ }_{\mu \nu} \omega_{\lambda}
$$
transform as tensors, where $\omega=\omega_{\nu} \mathrm{d} x^{\nu}$ is a one-form field.
(1.5 points)
f) Argue that for any two connections Γ and $\hat{\Gamma}$, the difference $\Gamma-\hat{\Gamma}$ transforms as a tensor, while neither of the two does so per se.
(1 point)
This looks good, we now have a means of constructing a well-behaved derivative; it might, however, be worthwhile to look back for a second. Remember that $\partial_{\mu} V^{\nu}$ did not transform as a tensor. Also remember that we defined the vector U as a directional derivative $U=U^{\nu} \partial_{\nu}$.
g) We defined the Lie bracket of two vector fields $[V, U]$. Show once more, that $[V, U]$ does transform as a tensor.
(1 point)
So far, by requiring the covariant derivative to behave tensorial, we have a very general connection object Γ. Now we demand that the metric $g_{\mu \nu}$ be covariantly constant, that is, if two vectors X and Y are parallel transported ${ }^{5}$, then the inner product between them remains constant under parallel transport. The condition reads
$$
\left(\nabla_{\kappa} g\right)_{\mu \nu}=0 .
$$

If it satisfies this condition, the connection ∇ is said to be metric compatible.
h) Show that for a metric compatible connection ∇ with components $\Gamma^{\lambda}{ }_{\mu \nu}$ the equation

$$
\partial_{\lambda} g_{\mu \nu}-\Gamma_{\lambda \mu}^{\kappa} g_{\kappa \nu}-\Gamma_{\lambda \nu}^{\kappa} g_{\kappa \mu}=0
$$

holds. Show that this implies ${ }^{6}$

$$
\Gamma_{(\mu \nu)}^{\kappa}=\tilde{\Gamma}_{\mu \nu}^{\kappa}+\frac{1}{2}\left(T_{\nu}{ }^{\kappa}{ }_{\mu}+T_{\mu}{ }^{\kappa}{ }_{\nu}\right),
$$

where $\Gamma_{(\mu \nu)}^{\kappa}=\frac{1}{2}\left(\Gamma^{\kappa}{ }_{\mu \nu}+\Gamma^{\kappa}{ }_{\nu \mu}\right), T^{\kappa}{ }_{\lambda \mu}=2 \Gamma^{\kappa}{ }_{[\lambda \mu]}=\Gamma^{\kappa}{ }_{\lambda \mu}-\Gamma^{\kappa}{ }_{\mu \lambda}$ and

$$
\tilde{\Gamma}_{\mu \nu}^{\kappa}=\frac{1}{2} g^{\kappa \lambda}\left(\partial_{\mu} g_{\nu \lambda}+\partial_{\nu} g_{\mu \lambda}-\partial_{\lambda} g_{\mu \nu}\right)
$$

are the Christoffel symbols.
Hint: Take a suitable linear combination of copies of the equation $\left(\nabla_{\lambda} g\right)_{\mu \nu}=0$ with cyclic permutations of (λ, μ, ν).
(3 points)

[^2]This implies, that the connection coefficients Γ are given by

$$
\Gamma^{\kappa}{ }_{\mu \nu}=\tilde{\Gamma}_{\mu \nu}^{\kappa}+K_{\mu \nu}^{\kappa},
$$

where

$$
K_{\mu \nu}^{\kappa} \equiv \frac{1}{2}\left(T^{\kappa}{ }_{\mu \nu}+T_{\mu}{ }_{\nu}^{\kappa}+T_{\nu}{ }^{\kappa}{ }_{\mu}\right)
$$

is called the contorsion as introduced in the lecture, whereas $T^{\kappa}{ }_{\mu \nu}$ is called the torsion tensor.
i) If the connection on a manifold is symmetric in the lower indices, and so is so called torsion-free, show that the connection components Γ will be those of $\tilde{\Gamma}$, the Christoffel symbols.

This torsion-free metric-compatible connection ∇, is called the Lev-Civita connection. We will be mainly concerned with this special connection in GR.

While the connection on a manifold was a very general object, admitting for the simultaneous existence of many connections, we saw that requiring for the connection to be torsion-free and metric compatible, pinned down the specific choice of Lev-Civita connection, which can be nicely calculated for a known metric. ${ }^{7}$ Let us work out a few examples on that.
j) On the previous sheets you constructed the induced(pull-back) metric on the two-sphere S^{2} and the torus T^{2} embedded in \mathbb{R}^{3} as well as de Sitter space embedded in $\mathbb{R}^{1,4}$. They were given respectively by

$$
\begin{aligned}
d s_{S^{2}}^{2} & =R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
d s_{T^{2}}^{2} & =r^{2} d \theta^{2}+(R+r \cos \theta)^{2} d \phi^{2} \\
d s_{d S^{4}}^{2} & =-d t^{2}+\alpha^{2} \cosh ^{2}(t / \alpha)\left[d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
\end{aligned}
$$

for each case, calculate the Christoffel symbols.
$(3+3+4=10$ points $)$

[^3]
[^0]: ${ }^{1}$ As a reminder, the connection is not a tensor, and so the specifics of index placement on the object is a matter of convention and book keeping.

[^1]: ${ }^{2}$ You need to assume that the same Leibniz rule applies for the action of a vector on a one-form, or as Sean Carroll put it, assume that the connection "commutes with contractions".
 ${ }^{3}$ The tilde on Γ is there to distinguish from the connection components in the old coordinates; if that is not already clear.
 ${ }^{4}$ This is a somewhat sloppy notation, maybe you would like to think of all the new coordinate labels as primed, for example, $y^{\mu^{\prime}}$; but that makes the equations look ugly and anyway it should be clear that we are labelling the two coordinates with α, β, \ldots and μ, ν, \ldots.

[^2]: ${ }^{5}$ If you have not covered parallel transport in the lecture, by the time you are reading this, do not worry, keep going.
 ${ }^{6}$ This $\tilde{\Gamma}$ is now not the coordinate transformed Γ or anything like that, it is just a name for this specific configuration of terms, known as the Christoffel symbols.

[^3]: ${ }^{7}$ Later we will see a somewhat more straight-forward method of calculating the Christoffel symbols, just so that you keep an open mind for that.

