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H6.1 Connections (25 points)
In the lecture you were introduced to the affine connection ∇ as a map

∇ : X(M)× X(M)→ X(M)

(X,Y ) 7→ ∇XY ,

with X(M) being the space of vector fields on M . This mapping satisfies

∇X(Y + Z) =∇XY +∇XZ
∇(X+Y )Z =∇XZ +∇Y Z
∇(fX)Y =f∇XY
∇X(fY ) =X[f ]Y + f∇XY ,

where X,Y, Z ∈ X(M), and f : M → R is a smooth function. The connection components Γλνµ
are defined by1

∇∂ν∂µ ≡ ∇ν∂µ = Γλνµ∂λ .

Rewriting for two vector fields X = Xµ∂µ, Y = Y µ∂µ,

∇XY = Xµ

(
∂Y λ

∂xµ
+ Y νΓλµν

)
∂λ ≡ Xµ (∇µY )λ ∂λ .

So far so well for vectors; now in order to define the action of the connection on general tensor
fields, one first imposes the action of ∇X on a function f : M → R to be

∇Xf = X[f ]

and then imposes the Leibniz rule, you were introduced to on previous sheets

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2) ,

where X ∈ X(M) and T1, T2 are tensor fields of arbitrary types.

1As a reminder, the connection is not a tensor, and so the specifics of index placement on the object is a matter
of convention and book keeping.
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a) Use the above properties to argue

∇µ (V ν) = ∂µV
ν + ΓνµλV

λ.

(1 point)

b) Let ω = ωνdxν be a one-form (a covector) and X = Xµ∂µ and Y = Y µ∂µ two vector
fields. Use what we just asked of the connection and its action on functions, to derive the
action of an affine connection ∇ on a covector ω,

(∇Xω)ν = Xµ∂µων −XµΓλµνωλ

by looking at ∇X (ωY ).2 (2 points)

It is easy to generalize this result to tensors of arbitrary type. Let T be a (q, r) tensor. Every
upper index goes with a +Γ and every lower one with a −Γ; that is

(∇XT )µ1...µqν1...νr = Xρ∂ρT
µ1...µq

ν1...νr +XρΓµ1ρκT
κµ2...µq

ν1...νr + · · ·+XρΓµqρκT
µ1...µq−1κ

ν1...νr

−XρΓκρν1T
µ1...µq

κν2...νr − · · · −XρΓκρνrT
µ1...µq

ν1...νr−1κ.

Remember that just a few lines above, we defined the connection components, corresponding
to a set of coordinates xµ by

∇µ (V ν) = ∂µV
ν + ΓνµλV

λ.

It should be obvious that we could have started from a different choice of coordinates yα, such
that34

∇ ∂

∂yβ

(
∂

∂yα

)
= ∇∂β∂α ≡ ∇β∂α = Γ̃γβα∂γ .

and so
∇βV α = ∂βV

α + Γ̃αβγV
γ

We are interested in tensors and tensorial transformation properties, so we would like to have

∇βV α =
∂xν

∂yβ
∂yα

∂xµ
∇νV µ.

c) Show that this means that connection components should transform as

Γ̃γβα =
∂xν

∂yβ
∂xµ

∂yα
∂yγ

∂xλ
Γλνµ −

∂2yγ

∂xµ∂xν
∂xµ

∂yα
∂xν

∂yβ
.

(3 points)

2You need to assume that the same Leibniz rule applies for the action of a vector on a one-form, or as Sean
Carroll put it, assume that the connection ”commutes with contractions”.

3The tilde on Γ is there to distinguish from the connection components in the old coordinates; if that is not
already clear.

4This is a somewhat sloppy notation, maybe you would like to think of all the new coordinate labels as primed,
for example, yµ

′
; but that makes the equations look ugly and anyway it should be clear that we are labelling

the two coordinates with α, β, . . . and µ, ν, . . ..
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d) Show, by explicit calculation, that the above transformation rule for the connection com-
ponents Γ, indeed makes ∇XY a vector. That is, explicitly show how (∇XY )ν transforms.

(1.5 points)

e) Show further, that with the same object Γ, the components of

(∇µω)ν = ∂µων − Γλµνωλ

transform as tensors, where ω = ωνdxν is a one-form field. (1.5 points)

f) Argue that for any two connections Γ and Γ̂, the difference Γ− Γ̂ transforms as a tensor,
while neither of the two does so per se. (1 point)

This looks good, we now have a means of constructing a well-behaved derivative; it might,
however, be worthwhile to look back for a second. Remember that ∂µV

ν did not transform as
a tensor. Also remember that we defined the vector U as a directional derivative U = Uν∂ν .

g) We defined the Lie bracket of two vector fields [V,U ]. Show once more, that [V,U ] does
transform as a tensor. (1 point)

So far, by requiring the covariant derivative to behave tensorial, we have a very general con-
nection object Γ. Now we demand that the metric gµν be covariantly constant, that is, if
two vectors X and Y are parallel transported5, then the inner product between them remains
constant under parallel transport. The condition reads

(∇κg)µν = 0 .

If it satisfies this condition, the connection ∇ is said to be metric compatible.

h) Show that for a metric compatible connection ∇ with components Γλµν the equation

∂λgµν − Γκλµgκν − Γκλνgκµ = 0

holds. Show that this implies6

Γκ(µν) = Γ̃κµν +
1

2

(
Tν

κ
µ + Tµ

κ
ν

)
,

where Γκ(µν) = 1
2 (Γκµν + Γκνµ), T κλµ = 2Γκ[λµ] = Γκλµ − Γκµλ and

Γ̃κµν =
1

2
gκλ (∂µgνλ + ∂νgµλ − ∂λgµν)

are the Christoffel symbols.
Hint: Take a suitable linear combination of copies of the equation (∇λg)µν = 0 with cyclic
permutations of (λ, µ, ν). (3 points)

5If you have not covered parallel transport in the lecture, by the time you are reading this, do not worry, keep
going.

6This Γ̃ is now not the coordinate transformed Γ or anything like that, it is just a name for this specific
configuration of terms, known as the Christoffel symbols.
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This implies, that the connection coefficients Γ are given by

Γκµν = Γ̃κµν +Kκ
µν ,

where

Kκ
µν ≡

1

2

(
T κµν + Tµ

κ
ν + Tν

κ
µ

)
is called the contorsion as introduced in the lecture, whereas T κµν is called the torsion tensor.

i) If the connection on a manifold is symmetric in the lower indices, and so is so called
torsion-free, show that the connection components Γ will be those of Γ̃, the Christoffel
symbols. (1 point)

This torsion-free metric-compatible connection ∇, is called the Lev-Civita connection. We will
be mainly concerned with this special connection in GR.

While the connection on a manifold was a very general object, admitting for the simultaneous
existence of many connections, we saw that requiring for the connection to be torsion-free and
metric compatible, pinned down the specific choice of Lev-Civita connection, which can be
nicely calculated for a known metric.7 Let us work out a few examples on that.

j) On the previous sheets you constructed the induced(pull-back) metric on the two-sphere
S2 and the torus T 2 embedded in R3 as well as de Sitter space embedded in R1,4. They
were given respectively by

ds2S2 =R2
(
dθ2 + sin2 θ dφ2

)
,

ds2T 2 =r2dθ2 + (R+ r cos θ)2 dφ2 ,

ds2dS4 =− dt2 + α2 cosh2(t/α)
[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dφ2

)]
.

for each case, calculate the Christoffel symbols. (3+3+4=10 points)

7Later we will see a somewhat more straight-forward method of calculating the Christoffel symbols, just so that
you keep an open mind for that.
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