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H 7.1 Geodesic equation and the Christoffel symbols (21 points)
In the lecture we have seen that a curve is a geodesic if and only if there is a parametrisation
such that it parallel transports its own tangent vector; that was true for any connection and
thus an arbitrary parallel transport. In the special case in which the connection on the manifold
is given by the Levi-Civita connection, which is the case we are concerned with in GR, given
two points, a geodesic is also that curve c connecting the points, that locally1 extremize the
length functional

L(c) =

∫
c
ds =

∫ λ1

λ0

√
−gµν

dxµ

dλ

dxν

dλ
dλ , (1)

where λ is the parameter of the curve. (Note that for simplicity we assume that c ⊂ M is
covered by a single chart.)

a) By varying the above functional, derive the geodesic equation

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
=

1

e

de

dλ

dxµ

dλ
, (2)

where e =
√
−gµν dxµ

dλ
dxν

dλ .

Notice that Γ is now the Christoffel symbol, that is, the extremization singled out this
specific choice for the connection. (3 points)

b) Show that if you parameterise the curve by its proper time τ the geodesic equation is
simplified to

d2xµ

dτ2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 . (3)

(2 points)

c) Remember when on the previous sheet, I mentioned in the last footnote that there is
another method for calculating the Christoffel symbols? A tutor always pays his debts.
You can look at the Lagrangian defined by gµν

dxµ

dλ
dxν

dλ and use the generalized Euler

Lagrange equation d
dλ

∂L
∂(dxα/dλ) −

∂L
∂xα = 0 . Show that this leads to the same specific

geodesic equation, and one can read the Christoffel symbols off it directly. (3 points)

1An nice example in Carroll’s book is the case of a 2-sphere, given every two points that are not diagonally
separated on the sphere, there is are two geodesics connecting them, i.e. the longer and the shorter part of
the orthodrome(grand circle, but honestly orthodrome sounds cooler.) passing the two points, so you can
immediately see that the longer path is a geodesic and so a local minimum of length, but globally there is
this other geodesic that gives a shorter path.
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Now, as an example of calculating the geodesic, let us consider geodesics of S2 with metric
ds2 = dθ2 + sin2 θ dϕ2.

c) Show, that the geodesic equations take the following form

d2θ

ds2
− sin θ cos θ

(
dϕ

ds

)2

= 0 , (4)

d2ϕ

ds2
+ 2 cot θ

dθ

ds

dϕ

ds
= 0 , (5)

where s is the arc length. (1 point)

d) Let θ = θ(ϕ) be the equation of the geodesic. Show that the above equations can be
written in one equation as follows

d2θ

dϕ2
− 2 cot θ

(
dθ

dϕ

)2

− sin θ cos θ = 0 . (6)

(1.5 points)

e) Define f(θ) = cot θ and show that f fulfills the following differential equation

d2f

dϕ2
+ f = 0 . (7)

What is the general solution? What do the geodesics of S2 look like? (2.5 points)

As another example, we can look at the fictitious forces that are observed in non-inertial frames
in Newtonian mechanics; they can be seen to arise from the metric connection. Given coordi-
nates (t, x, y, z) in euclidean, 4-dimensional space-time let us consider the rotating coordinate
system

t′ = t, x′ = (x2 + y2)
1
2 cos(φ− ωt), y′ = (x2 + y2)

1
2 sin(φ− ωt), z′ = z, tan(φ) = y/x .

(8)

f) Now we know the metric in the euclidean spacetime, and can do a change of coordinates
to get the metric in new coordinates. Use the results form the previous parts of the
exercise to calculate the equation of motion for a free particle in the non-inertial rotating
coordinates given above. (3 points)

g) In the equation of motion, there is a part that does not fit the form of the geodesic
equation we had before, rearrange if needed to separate these and identify the terms that
describe the centrifugal and Coriolis forces (both fictitious) that arise in a rotating frame.
This is an example of the geodesic equation in the presence of an external, here fictitious,
force. But you can imagine you would need to add terms to the geodesic equation if for
example the particle traversing the geodesic in your space-time is charged and subject to
an electromagnetic field. (3 points)

h) Having the equation of motion, you should be able to read the Christoffel symbols, What
about the Riemann Curvature tensor?(see next question.) (2 points)
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H7.2 Parallel transport and the curvature tensor (9 points)
The long wait is over and in the lecture you were introduced to a quantitative measure of
curvature, the Riemann curvature tensor Rρσµν . It was given by the connection as

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ . (9)

a) What is the geometric interpretation of the Riemann curvature tensor? How is it defined
at a point on the manifold while it has to do with moving vectors around on the manifold?
Why does it have 4 indices? Is it (anti-)symmetric with respect to any indices, if so, what
is the interpretation? (1 point).

b) Let us try to understand this geometrical meaning a bit more carefully. Assume an
infinitesimal parallelogram on the manifold2 stretched along the two dimensions we choose
to be 1, and 2. Let us refer to the four corners3 of this parallelogram as A, B, C and
D respectively, and say that for simplicity that in coordinates (x1, x2) these points will
respectively be (0, 0), (δa, 0), (δa, δb), and (0, δb).

� consider a generic vector V , originally belonging to the tangent space at point A; the
vector will have components V α.

� as a starting point, use the parallel transport equation to find ∂V α

∂x1
.

� use the above differential equation to propagate V from A to B.

� similarly, parallel transport it along the path ABCDA, and find the resulting vector.

� show that if we call the resulting vector V̂ α, then(
V̂ − V

)α
= δa δbRαλ12V

λ (10)

(4 points)

c) A closely related quantity is that of the commutator of two covariant derivatives along
directions µ and ν. Instead of focusing on a vector V at a point P on the manifold and
then pushing it around a loop, assume we have a vector field V ; now let us think for a
moment what ∇µV means, in light of our recent knowledge of parallel transport. It is
the deviation of the variation of vector V , along the curve with tangent vector in the
direction µ, from the variation dictated by parallel transport. The commutator [∇µ,∇ν ]
is then just moving first in the direction ν and then µ minus the the same operations with
reversed order.
Show that

[∇µ,∇ν ]V ρ = Rρσµν V
σ − T λµν∇λ V ρ (11)

where as defined on the last sheet

T κλµ = 2Γκ[λµ] = Γκλµ − Γκµλ (12)

(4 points)

2Do not be alarmed by the mention of a parallelogram on the manifold; it is true, we are no longer allowed to
think of vectors on the manifold as stretching from one point to another, but you can imagine the corresponding
parallelogram in the coordinates, and remember that manifolds locally look like Rn.

3For simplicity, assume there is no torsion for the case you are interested in, so the parallelogram actually closes,
your result will be however valid independent of the presence of torsion; if I got my math right, that effect is
gonna be of order (δaδb)2.
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