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H9.1 Back in the Elevator, Locally Inertial Frames (20 points)

Remember, that we started out with the Gedankenexperiment of being stuck in an elevator,
with no knowledge of the outside world, and going about our usual business of doing physics.
We then postulated the Einstein Equivalence principle as the idea that ”In small enough regions
of spacetime, the laws of physics reduce to those of special relativity; it is impossible to detect
the existence of a gravitational field.”. We are now in a position to see how we have actually
formulated this idea, in the formalism we’ve developed so far.
It was argued in the lecture, by explicit counting, that it is always possible to locally find
coordinates on M such that at the point p, ∂σgµν |p = 0. Hence the connection components
vanish at that point. These coordinates are called locally inertial coordinates. Note that the
second derivatives of the metric do not vanish in this coordinate system!1 Let us first remind
ourselves how we got that conclusion.
Consider a Lorentzian manifold M with metric tensor g and a point p ∈ M . We start with
general gµν(p) and without loss of generality we can assume that the coordinates of p are zero.

a) Argue that there are coordinates in which gµν(p) = ηµν . (2 points)

b) Change coordinates from xµ to x′µ = xµ + bµ αβx
αxβ. Show that g′µν(p) = ηµν still holds

and find bµ αβ such that the derivatives also vanish and ∂′αg
′
µν(p) = 0. This implies that

all Christoffel symbols vanish and we have constructed a locally inertial frame. (3 points)

c) Which coordinate transformations are we now still allowed to perform such that the trans-
formed frame is stays locally inertial? (2 points)

d) Do the constructed coordinates always coincide with the Riemann normal coordinates in-
troduced in the lecture? Provide arguments for your answer. (2 points)

So far so good. Now remember further, that on sheet 7 we formally introduced the Riemann
curvature tensor. Let us spend some more time on the symmetries of the Riemann tensor, this
will help get a better feeling of the geometrical significance of this object. In the following, it

1The metric at a point q near p can then be expanded as gµν(q) = ηµν + 1
3
Rµλνρq

λqρ + . . . . Note that in this
coordinate system p has coordinates x = (0, . . . , 0). Note the appearance of the Riemann tensor, making the
metric around point p non-trivial, could you have expected it?
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is a good idea to use a local coordinate system to simplify some calculations. This is allowed,
because if one finds a tensor equation, then (because of tensorial transformation behaviour
under general coordinate transformations) it is true in every coordinate system.

e) Since we are interested in index symmetry properties, it is a good idea to consider the Rie-
mann tensor with all indices lowered, Rµαβγ = gµκR

κ
αβγ . Use locally inertial coordinates

to deduce the symmetry properties of the curvature tensor, i.e.

Rκλµν = −Rκλνµ ,
Rκλµν = −Rλκµν ,
Rκλµν = Rµνκλ .

(2 points)

f) Show, as was done in the lecture, that the sum of cyclic permutations of the last three
indices of the curvature tensor vanishes, i.e.

Rκλµν +Rκµνλ +Rκνλµ = 0 , 1st Bianchi identity . (1)

(1 point)

g) Use the results in (e)) to show that (4) is equivalent to the vanishing of the antisymmetric
part of the last three indices of the Riemann tensor,

Rκ[µνλ] = 0 .

(1 point)

h) Given these relationships between the different components of the Riemann tensor, how
many independent quantities remain? Deduce the number of independent components of
the Riemann tensor in n dimensions.2 (2 points)

i) Make use of locally inertial coordinates once more to prove

∇[µRκλ]ρσ = 0 , 2nd Bianchi identity . (2)

(3 points)

j) By contracting indices of the second Bianchi identity (5) twice, show that

∇µRµν =
1

2
∇νR .

(2 points)

H9.2 Non-coordinate Basis and vielbeins (5 points)
When we started dealing with vector spaces on manifolds, we defined vectors at a point p on
the manifold M by directional derivatives along curves passing through p. We then specialized
to a set of curves corresponding to coordinates and the associated coordinate basis vectors.

2Look back at footnote 1, and remember that the metric in four dimensions had 20 non-vanishing double
derivative degrees of freedom! How many degrees of freedom does the Riemann tensor have in 4 dimensions?
Tada! :)
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So far, we have almost exclusively worked with vectors in the coordinate basis. While we will
probably not lose this habit up until the very end of this course, let us briefly take a look at the
other scenario; non-coordinate basis. In the coordinate basis Tp(M) is spanned by {∂µ} and
T ∗p (M) by {dxµ}. You might remember that a coordinate basis was associated with vanishing
Lie brackets. Now by definition, any given vector, can be expanded in terms of our coordinate
basis vectors; and if a set of non-coordinates basis vectors exist, they will not be an exception.
Let us label this new basis with α, β, . . . and our jolly good coordinate basis vectors with the
same old µ, ν, . . .. Then we can in principle write

êα = eα
µ∂µ , (eα

µ) ∈ GL(n,R) ,

where the eα
µ are just expansion coefficient matrices, such that det(eα

µ) > 03. In addition we
ask for our new basis vectors {êα} to be orthonormal with respect to gµν , i.e.

g(êα, êβ) = eα
µeβ

νgµν = ηαβ .

Where η is the canonical form of the metric we are dealing with(Minkowski or Euclidean in case
of Euclidean or Lorenzian metrics). One last bit of notation; since this eα

µ was a matrix, let us
denote the inverse of eα

µ by eαµ.

a) Show that the components of a vector V in the new basis êα are related to the old
components V µ by V α = eαµV

µ. (1 point)

b) Introduce the dual basis {θ̂α} to {êα} by
〈
θ̂α, êβ

〉
= δαβ . Conclude that θ̂α = eαµ dxµ.

(2 points)

So now we have kind of established the existence of a non-coordinate basis and dual basis; {êα}
and {θ̂α}. The objects relating the two sets of bases, i.e. the eαµ are called the vielbeins.4

c) Show that the metric is identically given by ds2 = ηαβ θ̂
α ⊗ θ̂β. (1 point)

d) Consider the standard induced metric on S2 as you calculated in C 4.2. Calculate the
non-coordinate basis θ̂α as well as the zweibeins eαµ. (1 point)

The non-coordinate basis is of great interest in general relativity, because it allows for the
definition spin connections and spinors on curved spacetimes. All that is beyond the scope of
this lecture.

3We would like to keep the metric signature, for one thing.
4So ,in two dimensions that would be zweibeins, in four dimensions they are vierbeins, and the bigger numbers
are out of the reach of my German knowledge ;).

3


