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–Homework–

1 Linear algebra, indices and tensors (17.5 pts.)

In this exercise we want to review some basics of linear algebra, familiarize ourselves with the
meaning of upper and lower indices and with the notion of tensors.
Consider a real vector space V of dimension n < ∞. For any vectorspace we define its dual
vector space by V ∗ = {w : V → R |w linear}. Upon introduction of a basis on V , B1 = {ei ∈
V | ı = 1, ..., n}, any vector v ∈ V can be expanded in this basis. This means that there are
unique numbers vi, i = 1, . . . , n for which

v =
n∑
i=1

viei ≡ viei (1)

holds. The numbers vi are referred to as the components of v in the basis B1 and one sometimes
identifies the list of numbers vi with the vector v. This, however, works only as long as a
specific basis is fixed, whereas the vector v itself exists independently of any basis. Once a
basis of V has been chosen, there is a natural choice of basis of V ∗. This is the dual basis
B∗
1 = {ei ∈ V ∗ | ı = 1, ..., n} defined by

ei (ej) = δij ∀i, j ∈ {1, ..., n}. (2)

Now, any w ∈ V ∗ can be written as

w =

n∑
i=1

wie
i ≡ wiei, (3)

in terms of unique numbers wi, i = 1, . . . , n.

a) Show that a dual vector is uniquely specified by its values on a basis of V , hence eq. (2)
indeed specifies a set of dual vectors. Further show that B∗

1 is indeed a basis of V ∗, from
which we deduce V ' V ∗. (2 points)

b) Let B2 = {ẽi ∈ V | ı = 1, ..., n} be a second basis of V and B∗
2 = {ẽi ∈ V ∗ | ı = 1, ..., n}

the associated dual basis. Write ei = (ei)
j ẽj and ei = (ei)j ẽ

j . Relate the components of
v ∈ V in B1 (and of w ∈ V ∗ in B∗

1) to those in B2 (and B∗
2). (1 point)

c) With the same v and w, calculate w(v) in both bases. Does the result depend on the
basis? Deduce (1 point)

(ei)k(ej)
k = δij . (4)
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d) Let us now consider the bidual space (V ∗)∗, which is the dual space of the dual space.
Show that

α : V −→ (V ∗)∗

v 7−→ α(v) defined by (α(v))(w) = w(v) for all w ∈ V ∗ (5)

is an isomorphism of vectorspaces. For surjectivity use that for linear maps the formula
dimV = dim (kerα) + dim (imα) holds. (2 points)

Since α does not make reference to any basis, it is called a canonical isomorphism. Thus V and
(V ∗)∗ are regarded as the same space and are not distinguished.
Although we know V ' V ∗ as well, there is in general no preferred choice of isomorphism
between V and V ∗. The situation changes if V is equipped with a symmetric non-degnerate1

bilinear form β : V × V −→ R. Then it is natural to define the isomorphisms

φ1 : V −→ V ∗

v 7−→ φ1(v) = β(v, ·), declared by (φ1(v))(w) = β(v, w) for all w ∈ V,
φ2 : V ∗ −→ V

w 7−→ φ2(w) defined by β(φ2(w), v) = w(v) for all v ∈ V.

(6)

Write βij = β(ei, ej) and define the numbers βij by βijβjk = δij .

e) Show that the components of φ1(v) in B∗
1 are related those in B1 by (1 point)

φ1(v)i = βijv
j . (7)

f) Show φ2 ◦ φ1 = idV and φ1 ◦ φ2 = idV ∗ . Deduce that the components of φ2(w) in B1 are
related to those of w in B∗

1 by (2 points)

φ2(w)i = βijwj . (8)

This allows for changing back and forth between V and V ∗. Application of φ1 is called lowering
an index and application of φ2 raising an index.
So far we have encountered two objects, vectors (referred to as contravariant) and dual vectors
(referred to as covariant). Let us now look at a generalization: A (k, l)-tensor T (k times contra-
and l times covariant) is a multilinear map

T : V ∗ × . . .× V ∗︸ ︷︷ ︸
k times

×V × . . .× V︸ ︷︷ ︸
l times

−→ R, (9)

and the space of (k, l)-tensors is denoted T k,l. The components of T with respect to the bases
B1 and B∗

1 are
T i1...ik j1...jl ≡ T (ei1 , . . . , eik , ej1 , . . . , ejl). (10)

The order of indices is significant, because T may answer differently on different arguments.
Upper (lower) indices can be lowered (raised) with φ1 (φ2).

g) What type of tensors are scalars, dual vectors and β? What type of tensors are vectors
and why is that so? (1 point)

1This is to ensure that φ1 and φ2 are isomorphisms.
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h) Why is a tensor uniquely specified by its components? (1 point)

i) Find a basis of T k,l in terms of the basis vectors in B1 and B∗
1. What is the dimension of

T k,l? (2 points)

j) Relate the components of T in B1 and B∗
1 to those in B2 and B∗

2. (2 points)

k) In special relativity spacetime M = R1,3 is equipped with the Minkowski metric η. What
object in the previous exercises is η associated to? (0.5 points)

Since η is of Lorentzian signature, i.e. it has one negative and three positive eigenvalues,
the indices are denoted by Greek and not Latin letters (which are reserved for Euclidean
signature). In special relativity it is convenient to work with inertial frames. Consider two
inertial frames — frame A with coordinates xµ and frame B with yµ — that are related
by a Lorentz transformation yµ = Λµ ν x

ν .

l) Let the components of a (k, l)-tensor T in frame A be Tµ1...µk ν1...νl . Show that the
components in frame B are (2 points)

Tµ
′
1...µ

′
k
ν′1...ν

′
l

= Λµ
′
1 µ1 . . .Λ

µ′k µk(Λ−1)ν1 ν′1 . . . (Λ
−1)νl ν′lT

µ1...µk
ν1...νl . (11)

2 Classical electrodynamics (22 pts.)

In this exercise we consider the field theoretical formulation of classical electrodynamics. The
electromagnetic field is described in terms of a vector field

A : R1,3 −→ R1,3, (12)

with components Aµ. These are related to the components of the field strength tensor F via

Fµν =
∂

∂xµ
Aν −

∂

∂xν
Aµ. (13)

The particles of mass mi and charge qi are described by their trajectories,

xi : Ik ⊂ R −→ R1,3 for i = 1, ..., N = number of particles

σi 7−→ xi(σi), (14)

which are parameterised by an arbitrary curve parameter σi and whose components are xµi .
The action is

S[xi, A] =−
N∑
i=1

∫
Ik

dσi

(
mi

√
−ηαβẋiα(σi)ẋi

β(σi)− qiAα(xi(σi))ẋi
α

)
− 1

4

∫
R1,3

d4xFαβ(x)Fαβ(x), (15)

where ẋi = d
dσi
xi and integration on Minkowski space is the same as on R4.

a) Shortly comment on the significance of each term in S. (1 point)
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b) Take the variation of S with respect to xµi in order to derive the Einstein-Lorentz equation
(2 points)

mi
d

dσi

ẋi
µ(σi)√

−ηαβẋiα(σi)ẋi
β(σi)

= qi F
µ
ν(xi(σi))ẋi

ν . (16)

c) Rewrite the second term in S, the term where qi appears, in terms of the charge-current
density (1 point)

jµ(x) =
N∑
i=1

qi

∫
dσi δ

(4)(x− xi(σi)) ẋiµ(σi). (17)

d) Take the variation of S with respect to Aµ to derive the inhomogenous Maxwell’s equations
(2 points)

∂

∂xµ
F νµ(x) = jν(x). (18)

e) Use the definition of the field strength tensor, eq. (13), to show the homogenous Maxwell’s
equations (2 points)

∂

∂xα
Fµν +

∂

∂xµ
Fνα +

∂

∂xν
Fαµ = 0. (19)

Now take Aµ = (φ, ~A) with φ and ~A such that ~B = rot ~A and ~E = − gradφ − ~̇A. Further,
jµ = (ρ,~j) with the charge-density ρ and current-density ~j.

f) Express the components of the field strength tensor, Fαβ, in terms of the components of

the electric and magnetic field, ~E and ~B. (1 point)

g) Show that eq. (18) indeed gives the inhomogenous Maxwell’s equations: (2 points)

div ~E = ρ, rot ~B − ~̇E = ~j. (20)

h) Show that eq. (19) indeed gives the homogenous Maxwell’s equations: (2 points)

div ~B = 0, rot ~E + ~̇B = 0. (21)

i) Parameterise eq. (16) by time, i.e. σ = x0 = t, and show that it reduces to (2 points)

m
d

dt

~v√
1− v2

= q
(
~E + ~v × ~B

)
. (22)

Now we consider the canonical energy-momentum tensor of a field φ(x) given by

T νµ = δνµL −
∂L

∂(∂νφ)
∂µφ (23)

For the next exercises, we consider the Maxwell electromagnetic contribution LEM of (15) with
jµ = 0.
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j) Compute the canonical-energy momentum tensor for LEM . (1 point)

In the previous item you will notice that such a tensor is not symmetric. To repair this add to
TµνEM an extra term as follows

T̂µνEM = TµνEM + ∂λF
µλAν . (24)

k) Use the appropriate equations of motions to verify that ∂µT
µν
EM = 0. Why is it T̂EM an

equally good energy-momentum tensor? (2 points)

l) Express the components T̂ 00
EM and T̂ 0i

EM in terms of the 3-vector fields ~E and ~B. (2 points)

Since charged particles and the electromagnetic field interact, these can exchange energy and
momentum. Therefore we would expect ∂µT̂

µν
EM 6= 0 for the case jµ 6= 0. To make the energy-

momentum conservation law hold, we need to add the energy-momentum tensor contribution
of the particles. For an a-th particle this is given by

T (a)
µν =

p
(a)
µ p

(a)
ν

p0(a)
δ(3)(~x− ~x(a)(σa)). (25)

Consider the following total energy momentum tensor

Tµν =
N∑
a=1

T (a)µν + T̂µνEM . (26)

m) Show that for the particle-field interacting case, ∂µT
µν = 0 is satisfied. (2 points)
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