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–Homework–

1 Tangent & cotangent vectors in General Relativity (10 points)

In this part we make a comeback to part 1 of the exercise sheet 1. Now we make the application
for general relativity, where the spacetime is described by a differentiable manifold M equipped
with a Lorentz metric1 g.

a) Why can spacetime not play the role of V in general relativity? (2 points)

Instead, the tangent space TpM at the point p ∈ M plays the role of V (pointwise). Given
coordinates on a patch U ⊂M around p, xµ : U −→ R4 with µ = 1, . . . , 4, the tangent space is
spanned by the partial derivates with respect to the coordinates, i.e. ∂µ = ∂

∂xµ . The duals of
∂µ are denoted by dxµ, they are elements of the cotangent space T ∗pM .

b) Does µ in xµ label a vector or dual vector component, or a set of maps? (0.5 points)

c) What object in H 1.1 is ∂µ associated to? (1 point)

d) Express ∂′µ = ∂
∂yµ in terms of the ∂µ. (2 points)

e) In item b) of H 1.1 we have looked at a change of basis. What is the analog to this here:
The change from xµ to yµ or from ∂µ to ∂′µ? (1 point)

f) Express dyµ (the dual of ∂′µ) in terms of the dxµ. (1 point)

We have stated above, that TpM plays the role of V . This means that V now depends on the
point in spacetime, thus it is natural to consider tensor fields,

T k,l : M −→ T k,l. (1)

A tensor field of (k, l) type assigns a (k, l)-tensor to each point in spacetime.

g) Let the components of a (k, l)-tensor T associated to the basis {∂µ} of TpM be Tµ1...µk ν1...νl .
What would be the components of T in a basis {∂µ′}? (1 point)

In particular, at a given p ∈M the Lorentz metric gp : TpM × TpM → R is a type (0,2) which
satisfies the following axioms at each point p ∈M :

1Its definition is given below.
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• gp(U, V ) = gp(V,U),

• if gp(U, V ) = 0 for any U ∈ TpM , then V = 0,

• one of the eigenvalues of the matrix form of (gµν(p)) in gp = gµν(p) dxµ⊗ dxν is negative,
the rest are positive.

• The map p 7→ gp is smooth.

h) According to H1.1, what object is associated to gp? What is gµν(p) in this case? (1 point)

i) What would be the physical meaning associated to the third axiom for a Lorentz metric?
(0.5 points)

If g is a Lorentz metric, (M, g) is called a Lorentz manifold. For such a case, the elements of
TpM are divided into three classes:

• gp(U,U) > 0⇒ U is spacelike,

• gp(U,U) = 0⇒ U is lightlike,

• gp(U,U) < 0⇒ U is timelike.

2 Pullbacks & Pushforwards (13 points)

In local coordinates {yα} on N the metric tensor can be expanded as

g = gαβ dyα ⊗ dyβ (2)

in terms of smooth functions gαβ. Examples are Rn equipped with the standard euclidean
metric, which is just what we call Rn, or Rn equipped with the Minkowski metric, which is
n-dimensional Minkowski space R1,n−1. This also shows that one and the same manifold can be
equipped with different metrics, by which it is made into different objects. Consider a manifold
N equipped with a metric g and a second manifold M with local coordinates {xµ}. If we further
have a smooth map ϕ : M −→ N we can use this map induce a metric for M . For that we need
to introduce a couple of new concepts:

The tangent bundle TM of a manifold M assembles all tangent vectors in M , it is defined
as

TM =
⋃
p∈M
{p} × TpM = {(p, v) : p ∈M,v ∈ TpM}. (3)

The map ϕ also induces a natural map ϕ∗ : TM → TN called the pushforward of ϕ, which
makes the following diagram commute

TM TN

M N

ϕ∗

π π

ϕ

, i.e. π ◦ ϕ∗ = ϕ ◦ π.
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Here π(p, v) = p. Let V ∈ TpM . Then the action of ϕ∗ on V will by given by

ϕ∗V =
∂yα

∂xµ
V µ ∂

∂yα

∣∣∣
ϕ(p)

. (4)

Another important concept is that of the pullback, for a tensor field A ∈ T 0,l the pullback ϕ∗A
is given by

ϕ∗A(p)(V1, . . . , Vl) = A(ϕ(p))(ϕ∗V1, . . . , ϕ∗Vl). (5)

This gives the so called induced metric on M , which is denoted as ϕ∗g. With g as in eq. (2),
the induced metric locally reads

ϕ∗g =

[
gαβ

(
∂yα

∂xµ

)(
∂yβ

∂xν

)]
dxµ ⊗ dxν . (6)

a) Use the pushforward ϕ∗ action in (4) to derive (6). (1 point)

Consider the two-sphere S2 embedded in R3,

S2 = {R(cosφ sin θ, sinφ sin θ, cos θ) |φ ∈ [0, 2π), θ ∈ [0, π), R > 0}. (7)

b) How do you need to restrict the domain of θ and φ so that the spherical coordinates

ϕ−1s (φ, θ) :

 sin θ cosφ
sin θ sinφ

cos θ

 7→
 x

y
z

 , (8)

provide a chart on the sphere?
(1 point)

Let ι be the inclusion map

ι : S2 −→ R3

(θ, φ) 7−→ R(cosφ sin θ, sinφ sin θ, cos θ)
(9)

c) Consider the following points {(0, 0), (π, 0), (0, π/2)} ∈ S2. Let Xθ = ∂θ, Xφ = ∂φ. What
would be the pushforward ι∗Xθ(p) and ι∗Xφ(p) for each of these points? (1 point)

d) Calculate the induced metric on S2. (3 points)

Now consider the two-dimensional torus given by its embedding in R3,

T 2 = {((R+ r cos θ) cosφ, (R+ r cos θ) sinφ, r sin θ) | θ, φ ∈ [0, 2π), R > r > 0} . (10)

e) The embedding of T 2 in R3 is given in eq. (10). Use the corresponding inclusion map to
calculate the induced metric on T 2. (3 points)

f) In cosmology the so called de Sitter space will be of importance. This space is cut out
of five-dimensional Minkowski space R1,4 — with coordinates u,w, x, y, z, with u being
timelike — by the hyperboloid equation

−u2 + w2 + x2 + y2 + z2 = α2, α ∈ R . (11)

On de Sitter space we introduce coordinates t, χ, θ, φ and embed it in R1,4 by

u = α sinh (t/α), w = α cosh (t/α) cosχ, x = α cosh (t/α) sinχ cos θ

y = α cosh (t/α) sinχ sin θ cosφ, z = α cosh (t/α) sinχ sin θ sinφ .
(12)

Calculate the induced metric on de Sitter space. (4 points)
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3 Vector fields & tensor acrobatics (15 pts.)

A smooth vector field X on a manifold M fulfills the two conditions

Linearity: X(αf + βg) = αX(f) + βX(g) with α, β ∈ R, f, g ∈ C∞(M)

Leibniz rule: X(f · g) = f ·X(g) + g ·X(f) with f, g ∈ C∞(M) .
(13)

In general, maps with the properties (13) are called derivations. Given two vector fields X and
Y we define a new vector field [X,Y ], the Lie bracket or commutator of X and Y , by

[X,Y ](f) = X(Y (f))− Y (X(f)) for f ∈ C∞(M). (14)

a) Show in two ways that [X,Y ] is indeed a vector field:

i) Prove that [X,Y ] is a derivation. (3 points)

ii) Write [X,Y ] in terms of components and show that they transform as those of a
vector field unter change of coordinates. (2 points)

Note that neither XY nor Y X is a vector field.

b) Show that the Lie bracket is

i) skew-symmetric, [X,Y ] = −[Y,X], and (1 point)

ii) satisfies the Jacobi identity, [[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0. (2 points)

c) Consider R2 equipped with some coordinates x1, x2. Calculate the Lie bracket of the
coordinate vector fields ∂1 = ∂

∂x1
and ∂2 = ∂

∂x2
. (1 point)

d) Find an example of two nowhere-vanishing, (at each point) linearly independent vector
fields in R2 whose Lie bracket does not vanish. Note that these two vector fields provide
a basis for the tangent space at each point. Due to your findings in item c) they can,
however, not be coordinate vector fields. (3 points)

Let T ∈ T 0,k(V ) in a given vector space V . We denote Sym(T ) as the symmetrized form of T ,
where its components are given by

Sym(T )µ1,...µk = T(µ1,...,µk) =
1

k!

∑
σ∈Sk

Tµσ(1),...µσ(k) . (15)

Symilarly, we define the fully antisymmetrized form of T as the tensor Alt(T ) such that

Alt(T )µ1,...µk = T[µ1,...,µk] =
1

k!

∑
σ∈Sk

sgnσ · Tµσ(1),...µσ(k) . (16)

We can make an analogous definition for tensors in T l,0(V ) by raising all of the indices in (15)
and (16).

1. For a T ∈ T 0,2(V ), show that T = Sym(T ) + Alt(T ). (1 point)

2. Why is that for T ∈ T 0,3(V ), T 6= Sym(T ) + Alt(T )? (0.5 points)

3. Prove for X ∈ T 2,0(V ) and Y ∈ T 0,2(V ) the following: (1.5 points)

• X(µν)Yµν = X(µν)Y(µν),

• X [µν]Yµν = X [µν]Y[µν],

• X [µν]Y(µν) = 0.
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