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Hand in: 29.5.2017

Special announcement: Due to Christi Himmelfahrt, the Group 4 tutorial will be shifted to
Friday 26.05. (14:00-16:00) and will take place in the BCTP Besprechungsraum.

–Homework–

1 Differential forms (20 points)

A differential form of order k or an k-form is a totally antisymmetric tensor of type (0, k). Let
us define the wedge product ∧ of k one-fomrs by the totally antisymmetric tensor product

dxµ1 ∧ . . . ∧ dxµk =
∑
σ∈Sk

sgn(σ) dxµσ(1) ⊗ . . .⊗ dxµσ(k) . (1)

a) Verify that the wedge product satisfies the following (1 point)

• dxµ1 ∧ . . . ∧ dxµk = 0 if some index µ appears at least twice.

• dxµ1 ∧ . . . ∧ dxµk = sgn(σ) dxµσ(1) ∧ . . . ∧ dxµσ(k) .

• dxµ1 ∧ . . . ∧ dxµk is linear in each dxµ.

If we denote a vector space of k-forms at p ∈ M by Ωk
p(M), the set of k-forms (1) is a basis of

Ωk
p(M) and an element ω ∈ Ωk

p(M) is expanded as

ω =
1

k!
ωµ1...µk dxµ1 ∧ . . . ∧ dxµk , (2)

where ωµ1···µk are taken totally antisymmetric, reflecting the antisymmetry of the basis. Since
there are

(
n
k

)
choices of the set (µ1, . . . , µk) out of (1, . . . , n) in (1), for an n-dimensional manifold

M , then dimΩk
p(M) =

(
n
k

)
. We define the exterior product of a k-form and a l-form ∧ :

Ωk
p(M)×Ωl

p(M)→ Ωk+l
p (M) by a trivial extension. Let ω ∈ Ωk

p(M) and ξ ∈ Ωl
p(M), the action

of the (k + l)-form on k + l vectors is defined by

ω ∧ ξ =
(k + l)!

k!l!
Alt(ω ⊗ ξ). (3)

If k + l > n, ω ∧ ξ = 0. With the exterior product we can define an algebra on the following
vector space

Ω∗p(M) =
n⊕
k=0

Ωk
p(M). (4)

We refer to (4) as the spaces of all diferential forms at p ∈M .
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b) Let ω ∈ Ωk
p(M), ξ ∈ Ωl

p(M) and η ∈ Ωr
p(M). Show that (2 points)

• ω ∧ ω = 0, if k is odd,

• ω ∧ ξ = (−1)klξ ∧ ω,

• (ω ∧ ξ) ∧ η = ω ∧ (ξ ∧ η).

We may assign a k-form smoothly at each point on a manifold M . We denote the space of
smooth k-forms on M by Ωk(M). Note that Ω0(M) is C∞(M). The exterior derivative d is
defined as the map d: Ωk(M)→ Ωk+1(M) such that

ω 7→ dω =
1

k!
∂νωµ1···µk dxν ∧ dxµ1 ∧ . . . ∧ dxµk . (5)

c) Consider the space Ω∗(R3). Write a ωk ∈ Ωk(M), for 1 ≤ k ≤ 3, in the form (1) with the
canonical coordinate system and basis {x, y, z; dx,dy,dz} for T ∗R3. (2 points)

d) Compute dωk for each ωk of c), i.e. for 1 ≤ k ≤ 3. (2 points)

e) Let ω ∈ Ωk(M) and ξ ∈ Ωl(M). Show that (2 points)

d(ω ∧ ξ) = dω ∧ ξ + (−1)kω ∧ dξ. (6)

f) Let ω, ξ ∈ Ωk(N) and let ϕ : M → N . Show that (2 points)

• d(ϕ∗ω) = ϕ∗(dω),

• ϕ∗(ω ∧ ξ) = (ϕ∗ξ) ∧ (ϕ∗ω).

g) Prove that d2 = 0. (2 points)

h) Consider the electromagnetic potential A = (φ, ~A), this can be expressed as a one form
A = Aµ dxµ. The electromagnetic tensor is defined by F = dA. Show that dF = 0 gives
the Bianchi identity, which leads to two of the known Maxwell equations. (1 point)

i) Assume the manifold M is endowed with a metric g. Le us define the invariant volume
element by

ΩM =
√
|g| dx1 ∧ . . . ∧ dxn, (7)

where g = det gµν and xµ are the coordinates of the chart (U, φ). Show that (7) is, up to
a sign, invariant under coordinate transformations. (1 point)

Moreover, it is natural to define an integration of f ∈ C∞(M) over M by∫
M
fΩM =

∫
M
f
√
|g|dx1 ∧ . . . ∧ dxn. (8)

We note that dimΩk(M) = dimΩn−k(M), hence Ωk(M) ' Ωn−k(M). If M is endowed with a
metric g, we can get a natural isomorphism between them called the Hodge operator ?, which
defined by linear map ? : Ωk(M)→ Ωn−k(M), with

ω 7→ ?ω =

√
|g|

k!(n− k)!
ωµ1···µkε

µ1···µk
νk+1···νn dxνk+1 ∧ . . . ∧ dxνn . (9)

We refer to ?ω as the Hodge dual of ω.
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j) Prove that ? ? ω = (−1)k(n−k)ω if (M, g) is Riemannian and ? ? ω = (−1)1+k(n−k)ω if
Lorentizian. (3 points)

k) What would be the Hodge dual of the electromagnetic tensor F? Prove that the rest of
the Maxwell equations are given by d?F = ?J , where J is the one-form corresponding to
the electromagnetic current. (2 points)

Let α, β ∈ Ωk(M). Since α∧ ?β is an n-form, its integral over M is well defined. We can define
the inner product of two k-forms as the bilinear map 〈·, ·〉 : Ωk(M)× Ωk(M)→ R such that

〈α, β〉 =

∫
M
α ∧ ?β. (10)

2 Branes & M-theory (10 points)

There are a lot of motivational words attached here to what is a very simple problem; don’t get
too distracted. In ordinary electromagnetism with point particles, the partof the action which
represents the coupling of the gauge-potential one form A(1) to a charged particle can be written
S =

∫
γ A

(1), where γ is the particle worldline γ : I ⊂ R → M. (The superscript on A(1) is just

to remind you that it is a one-form.) For this problem you will consider a theory related to
ordinary electromagnetism, but this time in 11 spacetime dimensions, with a three-form gauge
potential A(3) and four-form field strength F (4) = dA(3). Note that the field strength is invariant
under a gauge transformation A(3) → A(3) + dλ(2) for any two-form λ(2).

a) What would be the number of spatial dimensions of an object to which this gauge
field would naturally couple (for example, ordinary E + M couples to zero-dimensional
objects∼point particles)? (1 point)

b) The electric charge of an ordinary electron is given by the integral of the dual two-form
gauge field strength over a two-sphere surrounding the particle. How would you define
the “charge” of the object to which A(3) couples? Argue that it is conserved if ?F (4) = 0.

(3 points)

c) Imagine there is a “dual gauge potential” Ã that satisfies d(Ã) = ?F (4). To what dimen-
sionality object does it naturally couple? (2 points)

d) The action for the gauge field itself (as opposed to its coupling to other things) will be
an integral over the entire 11-dimensional spacetime. What are the terms that would
be allowed in such an action that are invariant under “local” gauge transformations, for
instance, gauge transformations specified by a two-form λ(2) that vanishes at infinity?
Restrict yourself to terms of first, second, or third order in A(3) and its first derivatives
(no second derivatives, no higher-order terms). You may use the exterior derivative, wedge
product, and Hodge dual, but not any explicit apperance of the metric. (4 points)

More background: “Supersymmetry” is a hypothetical symmetry relating bosons (particles
with integral spin) and fermions (particles with spin 1

2 ,
3
2 , etc.). An interesting feature is that

supersymmetric theories are only well-defined in 11 dimensions or less–in larger number of
dimensions, supersymmetry would require the existence of particles with spins greater than 2,
which cannot be consistently quantized, Eleven-dimensional supersymmetry is a unique theory,
which naturally includes a three-form gauge potential (not to mention gravity). “Recent” work
has shown that it also includes various higher-dimensional objects alluded to in this problem
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(although we’ve cut some corners here). This theory turns out to be a well defined limit
of something called M -theory, which has as other limits various 10-dimensional superstring
theories.
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