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—HOMEWORK—

1 Properties of affine Connections (16 points)

Let M be a Riemannian manifold with metric g and two charts (U, x), (V, y) such that UNV # ().
Denote the space of vector fields on M by X(M). As we have seen in the lecture, an affine
connection V is a map

ViX(M)xX(M)—X(M), (X,Y)— VxY,
which satisfies
o Vx(Y+2)=VxY +VxZ,
o Vix4v)Z =VxZ+VyZ,
e Viix)Y = fVxY,
o Vx(fY) = X[fIY + fVxY,

where X, Y, Z € X(M), and f : M — R is a smooth function. The connection components R ”
are given by

Vo,0u = V0 =T%,,.05 (1)
Using (1) one finds that for X#0,,Y = Y*09,,
oy
ViV = XM(W £ YT, )0y = XP(V,Y) 0y 2)

Now in order to define the action of the connection on general tensor fields, one first imposes
the action of Vx on a function f : M — R to be Vx f = X[f] and the imposes the Lebiniz rule,

Vx(T1 @ Ts) = (VxT1) @ To + T1 @ (VxT3), (3)
where X € X(M) and Ty, T are tensor fields of arbitrary types.
a) Let w € Q1(M) and X € X(M). Derive the action of an affine connection V on w,
(Vxw), = XFP,w, — XI'TA w0, (4)

by looking at Vx ((w,Y)), where (w,Y) = w,Y"(dz*,0,) = w,Y*. (2 points)



It is easy to generalize this result to tensors of arbitrary type. Let T be a (k,1) tensor, then

(VXT)m"'ﬂk iy = Xpame'"#k vy X P pHTﬂuz"-uk T X PTHk pHTﬂl"'ﬂkflli P

K K
— XPTH ) THVFE oy — oo = XPTR T W (5)

b) Consider the region U N V. Then the affine connection V has components Fzé 8 given by

V.o, ((;;) - fgﬁ(fm. (6)

Show that the connection components in the coordinates y of V' are related to the con-
nection of the coordinate system z of U by the transformation

ox dzH O _, 0%xv Oy

7 o= 2 2% 7 hi- 8
OB Gy gyB gyr M + Oy OyB dzv” (™)

Show that this transformation rule indeed makes VxY a vector for X,Y € X(M).
(2 points)
c¢) Show further, that the components for w € Q!(M)
(Vuw)y = O, = T (8)
transform as tensor components. (1 point)

Now we demand that the metric g be covariantly constant, that is, if two vectors X and Y
are parallel transported, then the inner product between them remains constant under parallel
transport. Let V' be a tangent vector to an arbitrary curve along which the vectors are parallel
transported. Then we have

0=y (40X, V) = VE[(Vag) (X, ¥) + (V. X, Y) + 9(X, VY )] = VXYY (Vg (9)

where we have used that V"V, X = V*V,.Y = 0. Since this is true for any curves and vectors,
this means that

(vng>,uu =0. (10)

If the condition (10) is satisfied, the connection V is said to be metric compatible.

d) Show that for a metric compatible connection V with components r uv the equation
akgw/ - uv9ky — re Awkp = 0 (11)
holds. Show that this implies
K Tk 1 K K
Ty = I + §(Tv ptTu"),

where I'* (wv) = %(FH uv +I'® ,,,u), A Ap = 2I'% ] = I A e A and

1
re uy = §gn>\(8,ugu)\ + 8ugu)\ - a)\g,ul/)- (12)
The connection components in (12) are known as the Christoffel symbols. (3 points)



This implies, that the connection coefficients are given by
FKMV :fﬁuu"i_KHum (13)

where K", = %(T“ w +T,"% 0 +T,%,) is called the contorsion, whereas T" ,,, is called the
torsion tensor. This implies, that if the torsion tensor vanishes on a manifold M, the components
of the metric connection V are given by the Christoffel symbols. The connection is then called
the Levi-Civita connection.

e) In the last sheet you constructed the induced metric on the two-sphere S? and the torus
T? embedded in R? as well as de Sitter space embedded in RM*. They were given by

dsg, =R* (d6* + sin® 0 d¢?)
ds2, =r?d6* + (R + r cos 0)? d¢? (14)
dsigs = — dt* + a® cosh?(t/a) [dx2 + sin? (d92 + sin’ f d¢2)] .

Calculate the respective Christoffel symbols. (8 points)

2 Geodesic equation (5 points)

A curve is a geodesic iff there is a parametrization such that it parallel transports its own
tangent vector. In the case in which the connection on the manifold is given by the Levi-
Civita connection, given two points, a geodesic is also that curve C connecting the points, that
extremizes the length functional

As dz# dzv
Length(C) = /ds :/ AN/ =g —v —1 (15)
g AO AN A

where A is the parameter of the curve. For simplicity of this exercise, assume that ImC C M is
covered by a single chart.

a) By varying the above functional, derive the geodesic equation

d2zH " da? dx® 1 de dz*

DTV T e

where e = \/fgm,‘%\”%. (3 points)

b) Show that if you parametrize the curve by its proper time 7, the geodesic equation is
simplified to (2 points)

(16)

d2zH da? dx®
+ 1 - —— ——
dA PTAN d

—0. (17)

Remark: Note that the variational principle, § [ (gija'cia';j ) = 0 gives the same geodesics as the

defining property for geodesics, & [(g;ji'4’ )% = 0, where the derivative is taken with respect
to any affine parameter like, for eg, the proper length. This variation gives the Christoffel
connection (torsionless and metric-compatible), irrespective of any other connection that may
be defined on the manifold. So, in practice, a very fast way of computing Christoffel symbols
is to write down the Euler-Lagrange equations for the simplified action and then read off the
Christoffel symbols from the resulting geodesic equation.



3 Proper time in general relativity and GPS (17 points)

A good approximation to the metric outside the surface of Earth is

ds? = —(1 4 2®)dt? + (1 — 2®)dr? + r*(d6? + sin 62 d¢?) , (18)

with the Newtonian gravitational potential ® = —GM/r. Here, G = 6.67 - 1071t m3 /kg/s? is
Newton’s gravitational constant and M = 5.97 - 10*4 kg is the mass of Earth. We will further
need the radius of Earth, Ry = 6371km. The coordinates are chosen such that the spatial
origin is located in the center of Earth and Earth rotates around the 8 = 0 axis.

2)
b)

For which observers is the coordinate time ¢ the proper time? (1 point)

Consider a clock not moving relative to Earth (because it is resting on your desk). Keeping
r and 6 still arbitrary, calculate the time measured by this clock as a function of the elapsed
coordinate time. You will see two effects, discuss these. (4 points)

Which clock runs faster: One resting on the surface of Earth or one on top of a tall
building? Let us define a second by the requirement that a reference clock at r = Ry and
6 = m/2 (equator) measures 24 h for one revolution of Earth. (4 points)

Solve for a geodesic corresponding to a circular orbit around the equator. In particular,
find de/dt. (4 points)

Now consider a GPS satellite orbiting at an altitude of 20200km above the surface of
Earth around the equator. What is the time measured by a clock on this satellite needed
for one complete orbit (relative to the also rotating earth)? Compare this to the time
measured by the reference clock defined in item c¢). What are the absolute time difference
and the relative deviation? (4 points)

For this problem you might want to consider the Christoffel symbols of (18). Up to symmetry,
the non-vanishing components are given by

o i o
Fir:_?(1+2q))7 Ty=-—-(1-29), I,=_—(1-28), Th=-r(1-29),
I, =—rsin®0(1 —28), T =r" T% =—rtcosfsing, T, =r’sin*y, (19)

Fg¢ = r* cosfsin b.



