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–Homework–

1 Properties of affine Connections (16 points)

Let M be a Riemannian manifold with metric g and two charts (U, x), (V, y) such that U∩V 6= ∅.
Denote the space of vector fields on M by X(M). As we have seen in the lecture, an affine
connection ∇ is a map

∇ : X(M)× X(M)→ X(M), (X,Y ) 7→ ∇XY,

which satisfies

• ∇X(Y + Z) = ∇XY +∇XZ,

• ∇(X+Y )Z = ∇XZ +∇Y Z,

• ∇(fX)Y = f∇XY,

• ∇X(fY ) = X[f ]Y + f∇XY,

where X,Y, Z ∈ X(M), and f : M → R is a smooth function. The connection components Γλ νµ
are given by

∇∂ν∂µ ≡ ∇ν∂µ = Γλ νµ∂λ (1)

Using (1) one finds that for Xµ∂µ, Y = Y µ∂µ,

∇XY = Xµ
(∂Y λ

∂xµ
+ Y νΓλ µν

)
∂λ ≡ Xµ(∇µY )λ∂λ (2)

Now in order to define the action of the connection on general tensor fields, one first imposes
the action of ∇X on a function f : M → R to be ∇Xf = X[f ] and the imposes the Lebiniz rule,

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2), (3)

where X ∈ X(M) and T1, T2 are tensor fields of arbitrary types.

a) Let ω ∈ Ω1(M) and X ∈ X(M). Derive the action of an affine connection ∇ on ω,

(∇Xω)ν = Xµ∂µων −XµΓλ µνωλ, (4)

by looking at ∇X(〈ω, Y 〉), where 〈ω, Y 〉 = ωµY
ν〈dxµ, ∂ν〉 = ωµY

µ. (2 points)
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It is easy to generalize this result to tensors of arbitrary type. Let T be a (k, l) tensor, then

(∇XT )µ1···µk ν1···νl = Xρ∂ρT
µ1···µk

ν1···νl +XρΓµ1 ρκT
κµ2···µk

ν1···νl + · · ·+XρΓµk ρκT
µ1···µk−1κ

ν1···νl
−XρΓκ ρν1T

µ1···µk
κν2···νl − · · · −X

ρΓκ ρνlT
µ1···µk

ν1···νl−1κ. (5)

b) Consider the region U ∩ V . Then the affine connection ∇ has components Γ̃γαβ, given by

∇ ∂
∂yα

( ∂

∂yβ

)
= Γ̃γαβ

∂

∂yγ
. (6)

Show that the connection components in the coordinates y of V are related to the con-
nection of the coordinate system x of U by the transformation

Γ̃γ αβ =
∂xλ

∂yα
∂xµ

∂yβ
∂xγ

∂yν
Γν λµ +

∂2xν

∂yα∂yβ
∂yγ

∂xν
. (7)

Show that this transformation rule indeed makes ∇XY a vector for X,Y ∈ X(M).
(2 points)

c) Show further, that the components for ω ∈ Ω1(M)

(∇µω)ν = ∂µων − Γλ µνωλ (8)

transform as tensor components. (1 point)

Now we demand that the metric g be covariantly constant, that is, if two vectors X and Y
are parallel transported, then the inner product between them remains constant under parallel
transport. Let V be a tangent vector to an arbitrary curve along which the vectors are parallel
transported. Then we have

0 = ∇V
(
g(X,Y )

)
= V κ[(∇κg)(X,Y ) + g(∇κX,Y ) + g(X,∇κY )] = V κXµY ν(∇κg)µν , (9)

where we have used that V κ∇κX = V κ∇κY = 0. Since this is true for any curves and vectors,
this means that

(∇κg)µν = 0. (10)

If the condition (10) is satisfied, the connection ∇ is said to be metric compatible.

d) Show that for a metric compatible connection ∇ with components Γλ µν the equation

∂λgµν − Γκ µνgκν − Γκ λνgκµ = 0 (11)

holds. Show that this implies

Γκ (µν) = Γ̃κ µν +
1

2
(Tν

κ
µ + Tµ

κ
ν),

where Γκ (µν) = 1
2(Γκ µν + Γκ νµ), T κ λµ = 2Γκ [λµ] = Γκ λµ − Γκ µλ and

Γ̃κ µν =
1

2
gκλ(∂µgνλ + ∂νgµλ − ∂λgµν). (12)

The connection components in (12) are known as the Christoffel symbols. (3 points)
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This implies, that the connection coefficients are given by

Γκ µν = Γ̃κ µν +Kκ
µν , (13)

where Kκ
µν ≡ 1

2(T κ µν + Tµ
κ
ν + Tν

κ
µ) is called the contorsion, whereas T κ µν is called the

torsion tensor. This implies, that if the torsion tensor vanishes on a manifoldM , the components
of the metric connection ∇ are given by the Christoffel symbols. The connection is then called
the Levi-Civita connection.

e) In the last sheet you constructed the induced metric on the two-sphere S2 and the torus
T 2 embedded in R3 as well as de Sitter space embedded in R1,4. They were given by

ds2S2 =R2
(
dθ2 + sin2 θ dφ2

)
,

ds2T 2 =r2dθ2 + (R+ r cos θ)2 dφ2 ,

ds2dS4 =− dt2 + α2 cosh2(t/α)
[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dφ2

)]
.

(14)

Calculate the respective Christoffel symbols. (8 points)

2 Geodesic equation (5 points)

A curve is a geodesic iff there is a parametrization such that it parallel transports its own
tangent vector. In the case in which the connection on the manifold is given by the Levi-
Civita connection, given two points, a geodesic is also that curve C connecting the points, that
extremizes the length functional

Length(C) =

∫
C

ds =

∫ λf

λ0

dλ

√
−gµν

dxµ

dλ

dxν

dλ
, (15)

where λ is the parameter of the curve. For simplicity of this exercise, assume that ImC ⊂M is
covered by a single chart.

a) By varying the above functional, derive the geodesic equation

d2xµ

dλ
+ Γµ ρσ

dxρ

dλ

dxσ

dλ
=

1

e

de

dλ

dxµ

dλ
, (16)

where e =
√
−gµν dxµ

dλ
dxν

dλ . (3 points)

b) Show that if you parametrize the curve by its proper time τ , the geodesic equation is
simplified to (2 points)

d2xµ

dλ
+ Γµ ρσ

dxρ

dλ

dxσ

dλ
= 0. (17)

Remark: Note that the variational principle, δ
∫

(gij ẋ
iẋj) = 0 gives the same geodesics as the

defining property for geodesics, δ
∫

(gij ẋ
iẋj)

1
2 = 0, where the derivative is taken with respect

to any affine parameter like, for eg, the proper length. This variation gives the Christoffel
connection (torsionless and metric-compatible), irrespective of any other connection that may
be defined on the manifold. So, in practice, a very fast way of computing Christoffel symbols
is to write down the Euler-Lagrange equations for the simplified action and then read off the
Christoffel symbols from the resulting geodesic equation.
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3 Proper time in general relativity and GPS (17 points)

A good approximation to the metric outside the surface of Earth is

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)dr2 + r2(dθ2 + sin θ2 dφ2) , (18)

with the Newtonian gravitational potential Φ = −GM/r. Here, G = 6.67 · 10−11 m3/kg/s2 is
Newton’s gravitational constant and M = 5.97 · 1024 kg is the mass of Earth. We will further
need the radius of Earth, R0 = 6 371 km. The coordinates are chosen such that the spatial
origin is located in the center of Earth and Earth rotates around the θ = 0 axis.

a) For which observers is the coordinate time t the proper time? (1 point)

b) Consider a clock not moving relative to Earth (because it is resting on your desk). Keeping
r and θ still arbitrary, calculate the time measured by this clock as a function of the elapsed
coordinate time. You will see two effects, discuss these. (4 points)

c) Which clock runs faster: One resting on the surface of Earth or one on top of a tall
building? Let us define a second by the requirement that a reference clock at r = R0 and
θ = π/2 (equator) measures 24 h for one revolution of Earth. (4 points)

d) Solve for a geodesic corresponding to a circular orbit around the equator. In particular,
find dφ/dt. (4 points)

e) Now consider a GPS satellite orbiting at an altitude of 20 200 km above the surface of
Earth around the equator. What is the time measured by a clock on this satellite needed
for one complete orbit (relative to the also rotating earth)? Compare this to the time
measured by the reference clock defined in item c). What are the absolute time difference
and the relative deviation? (4 points)

For this problem you might want to consider the Christoffel symbols of (18). Up to symmetry,
the non-vanishing components are given by

Γttr = −Φ

r
(1 + 2Φ), Γrtt = −Φ

r
(1− 2Φ), Γrrr =

Φ

r
(1− 2Φ), Γrθθ = −r(1− 2Φ),

Γrφφ = −r sin2 θ(1− 2Φ), Γθrθ = r3, Γθφφ = −r4 cos θ sin θ, Γφrφ = r3 sin4 θ, (19)

Γφθφ = r4 cos θ sin θ.
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