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–Homework–

1 Locally inertial frames (8 points)

Recall from the lecture the Einstein Equivalence Principle (EEP), which states:
Locally, the laws of physics reduce to special relativity.

Consider a Lorentzian manifold M with metric tensor g and a point p ∈ M . For this exer-
cise we make first a review of the local notion of an inertial frame. This means at every p ∈M ,
we should find a coordinate system such that

1. Lengths are measured locally as in Minkowksi space.

2. Locally, (infinitesimal) particles move as in Minkowski space, i.e.

Free particles:
D

dτ
pµ =

∂ϕµ

∂τ
(∂µp

µ + Γµ νρp
ρ︸ ︷︷ ︸

=0

) = 0. (1)

We can restate the EEP as follows: Given a 4d Lorentzian manifold (M, g), for any p ∈ M
there is a coordinate system (Up, ϕp), where Up is a neighborhood of p and ϕp(p) = 0 ∈ R4,
such that:

• ∇gp(X,Y ) = gp(∇X,Y ) + gp(X,∇Y ): metric connection at p for any X,Y ∈ TpM ,

• gµν(p) = ηµν = diag(−1, 1, 1, 1),

• Γν µρ(p) = 0.

We call such a coordinate system a locally inertial frame.

In the following, we want to make a construction for local inertial frames. We start with
general gµν(p). Without loss of generality we can assume that the coordinates of p are zero.

a) Argue that there are coordinates in which gµν(p) = ηµν . (2 points)
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b) Change coordinates from xµ to x′µ = xµ + bµ αβx
αxβ. Show that g′µν(p) = ηµν still holds

and find bµ αβ such that ∂′αg
′
µν(p) = 0. This implies that all Christoffel symbols vanish

and we have constructed a locally inertial frame. (3 points)

c) Which coordinate transformations are we now still allowed to perform such that the trans-
formed frame is stays locally inertial? (1 point)

d) Can you think of another construction for a local inertial frame? Formulate your answer.
(2 points)

2 Curvature and Riemann tensor (15 points)

As we have seen in the previous exercise sheet, the connection components Γµαβ do not transform
tensorially under coordinate redefinitions. Hence once cannot expect that they have an intrinsic
geometrical meaning as a measure of how much a manifold is curved. For example, on a flat
space Γµαβ vanish for Cartesian coordinates but fail to do so in polar coordinates. Intrinsic
objects that measure the curvature are the torsion tensor and the Riemann tensor. This exercise
is dedicated to the Riemann tensor discussed in the lecture

Rµαβγ = ∂βΓµαγ − ∂γΓµαβ + ΓδαγΓµδβ − ΓδαβΓµδγ .

Note that the Riemann tensor is defined without reference to any metric and therefore the above
formula holds for every connection with components Γµαβ.

a) Consider an infinitesimal parallelogram pqrs whose coordinates are xµ, xµ + εµ,
xµ + εµ + δµ and xµ + δµ, respectively (here we assume that p,q,r,s are all covered by
the same chart (U, x)). Take a vector V0 ∈ Tp(M), parallel transport it along the curve
C = pqr and call the resulting vector VC(r) ∈ Tr(M). Similarly, parallel transport of V0
along C ′ = psr yields another vector VC′(r) ∈ Tr(M). Show that the difference is given
by (4 points)

V µ
C′(r)− V µ

C (r) = V κ
0 R

µ
κλνε

λδν .
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Figure 1: Infinitesimal parallelogram pqrs.
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In the previous exercise we have seen, that it is always possible to locally find locally inertial
coordinates. Note that the second derivatives of the metric do not vanish in this coordinate
system!1 We will, in the following use this coordinate system to simplify some calculations. This
is possible, because if one finds a purely tensorial equation, then (because of its transformation
behaviour under general coordinate transformations) it is true in every coordinate system2.

b) Consider the Riemann tensor with all indices lowered, Rµαβγ = gµκR
κ
αβγ . Use locally

inertial coordinates to deduce the symmetry properties of the curvature tensor, i.e.
(2 points)

Rκλµν = −Rκλνµ ,
Rκλµν = −Rλκµν ,
Rκλµν = Rµνκλ .

c) Show that the sum of cyclic permutations of the last three indices of the curvature tensor
vanishes, i.e. (1 point)

Rκλµν +Rκµνλ +Rκνλµ = 0 , 1st Bianchi identity . (2)

d) Use the results in (b)) to show that (2) is equivalent to the vanishing of the antisymmetric
part of the last three indices of the Riemann tensor, (1 point)

Rκ[µνλ] = 0 .

e) Given these relationships between the different components of the Riemann tensor, how
many independent quantities remain? Deduce the number of independent components of
the Riemann tensor in n dimensions. (2 points)

f) Make use of locally inertial coordinates once more to prove (3 points)

∇[µRκλ]ρσ = 0 , 2nd Bianchi identity . (3)

g) By contracting indices of the second Bianchi identity (3) twice, show that (2 points)

∇µRµν =
1

2
∇νR .

1The metric at a point q near p can then be expanded as gµν(q) = ηµν + 1
3
Rµλνρq

λqρ + . . . . Note that in this
coordinate system p has coordinates x = (0, . . . , 0).

2One can always construct an atlas for M with just locally inertial frames as charts. Then for two locally inertial
frames (Up, ϕp), (Uq, ϕq), transform the tensorial equation on Up ∩ Uq 6= ∅.
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3 Non-coordinate basis and vielbeins (5 points)

In the coordinate basis Tp(M) is spanned by {∂µ} and T ∗p (M) by {dxµ}. If M is endowed with
a metric g there exists an alternative choice. Consider a GL(n,R)-rotation of the basis vectors
∂µ, i.e.

êα = eα
µ∂µ , (eα

µ) ∈ GL(n,R) ,

such that det(eα
µ) > 0 in order to preserve the orientation of the manifold. In addition we

require {êα} to be orthonormal with respect to gµν , i.e.

g(êα, êβ) = eα
µeβ

νgµν = ηαβ .

If the manifold is strictly Riemannian ηαβ should be replaced by δαβ. Denote the inverse of eα
µ

by eαµ.

a) Show that the components of a vector V in the new basis êα are related to the old
components V µ by V α = eαµV

µ. (1 point)

b) Introduce the dual basis {θ̂α} to {êα} by
〈
θ̂α, êβ

〉
= δαβ . Conclude that θ̂α = eαµ dxµ.

(2 points)

{êα} and {θ̂α} are called the non-coordiante basis and eαµ are called the vielbeins.

c) Show that the metric is given by ds2 = ηαβ θ̂
α ⊗ θ̂β. (1 point)

d) Consider the standard induced metric on S2 as in H 9.1. Calculate the non-coordinate
basis θ̂α as well as the zweibeins eαµ. (1 point)

The non-coordinate basis is of great interest in general relativity, because it allows for the
definition of spinors on curved spacetimes3.

3The curved spacetime counterparts to the γ-matrices in flat spacetime are defined as γµ = eα
µγα and fulfill

{γµ, γν} = 2gµν .

4


