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–Homework–

1 Perturbative gravity & Gravitational waves (25 points)

In the lecture it has been discussed the Newtonian limit for GR: For slowly moving particles
under a weak and static gravitational field, General relativity reduces to Newtonian gravity.
Now we want to describe gravity effects beyond Newtonian theory. Hereby we only consider
here a weak gravitational field.

To make a perturbative description of gravity, consider a coordinate system (U, x) of the space-
time manifold M , in which the metric g takes the form gµν(x)dxµdxν with

gµν(x) = ηµν + hµν(x), (1)

where η is the Minkowski metric and hµν(x) is a small perturbation, i.e., |hµν(x)| � 1 and
|∂ρhµν(x)| � 1 for all values in x(U) 1. Hence, it is sufficient to work in linear order in hµν(x).
In particular, we can raise and lower indices of hµν(x) with the Minkowski metric ηµν .

a) Consider a change of coordinates ψ : x(U) → y(V ) to a new coordinate system (V, y)
given by (4 points)

ψ : xµ 7→ yµ(x) = xµ + εµ(x), (2)

with |εµ(x)| � 1 and |∂νεµ(x)| � 1 for all values in x(U). Show that the inverse coordinate
change ψ−1 to relevant leading order reads

ψ−1 : yµ 7→ xµ(y) = yµ − εµ(y). (3)

Further, express the metric g = g′µν(y)dyµdyν in the coordinate system (V, y) to leading
order. We might refer to the first order perturbation of the metric in this new coordinate
system as a gauge transformation in the linearized theory.

b) Show that the Ricci tensor Ric = Rµν(x)dxµdxν in the coordinate system (U, x) is given
by (4 points)

Rµν(x) =
1

2

(
∂λ∂µh

λ
ν + ∂λ∂νh

λ
µ −�hµν − ∂µ∂νh

)
, (4)

where h = hµµ and � = ηµν∂µ∂ν .

1More generally, one can consider perturbations over a general spacetime background, i.e. gµν = g
(0)
µν +hµν . For

the present discussion we restrict to g
(0)
µν = ηµν .
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Since we are free to work with whatever coordinates we like, we can use coordinate transforma-
tions as in item a) to simplify the problem. For matters of simplification, people like introducing
the trace reversed perturbation defined by

h̄µν = hµν −
1

2
hηµν . (5)

In particular, it is possible to enforce the Lorenz gauge

∂µh̄
µν = 0 . (6)

c) What coordinate transformation in a) should be performed to achieve the Lorenz gauge
condition? (2 points)

d) Show that in this gauge we obtain the linearized Einstein equation is (2 points)

�h̄µν = −16πGNTµν . (7)

e) Verify that the plane wave (2 points)

hµν(x) = aµν cos (k · x+ φ) with a · b = η(aµ∂µ, b
ν∂ν) = aµbµ (8)

with constant kµ, constant symmetric aµν and constant phase φ solves the linearized
Einstein equation (7) in the vacuum, i.e. for Tµν = 0, if kµ∂µ is light-like. Further show
that the gauge condition (6) implies

kλa
λ
µ =

1

2
kµa

λ
λ. (9)

f) Assume that aµν fulfills the gauge condition (9). Show that (1 point)

ãµν = aµν + kµbν + kνbµ (10)

with constant bµ fulfills this condition as well.

g) With the help of the discovered gauge transformations count the physical degrees of free-
dom of aµν . (2 points)

Hint: Note that the transformation of aµν to ãµν in eq. (10) arises from a suitable coor-
dinate transformation. This fact you do no need to show.

Now we want to solve Einstein’s equation when Tµν is non-vanshing due to a matter source.
Recall from your knowledge on Electrodynamics, an equation like (7) can be solved by using
Green’s functions, that is

h̄µν(x) = −16πGN

∫
d4yG(x− y)Tµν(y). (11)

h) Argue that the Green function required in (11) leads to (2 points)

h̄µν(t, ~x) = 4GN

∫
d3y

1

|~x− ~y|
Tµν(tret, ~y), with tret = t− |~x− ~y|. (12)
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i) Consider the observer —with coordinate x(p)— to be very far away from the matter source
responsible of Tµν . Say at a distance r to the observer. Under this assumption, show that
(12) can be approximated as (2 points)

h̄µν(x) = −4GN
r

∫
d3yTν(tret, ~y). (13)

j) Using the Lorenz gauge condition ∂µh̄
µν = 0, derive the quadrupole formula for the metric

perturbation h in terms of the quadrupole momentum tensor Qij (2 points)

h̄ij(x) = −2GN
r

d2Qij(t)

dt2

∣∣∣
t=tret

, with Qij(t) =

∫
d3yT 00(t, ~y)yiyj . (14)

Finally we examine a special case for production of gravitational waves. Consider two stars of
mass m? in a circular orbit in the y1, y2 plane, at a distance R from their common center of
mass. We can write a path for the star a and b as

y1a(t) = R cos Ωt, y2a(t) = R sin Ωt, (15)

y1b (t) = −R cos Ωt, y2b (t) = −R sin Ωt. (16)

The corresponding energy density of the binary system is given by

T 00(y) = m?δ
3(~y)[δ(y1 −R cos Ωt)δ(y2 −R sin Ωt) + δ(y1 +R cos Ωt)δ(y2 +R sin Ωt)]. (17)

k) Using (14), find the expression for the perturbed metric gµν = ηµν +hµν —due to a binary
system— for an observer standing on earth. (2 points)
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