Exercises on Advanced Topics in String Theory

Priv.-Doz. Dr. Stefan Förste

http://www.th.physik.uni-bonn.de/people/fierro/StringSS18/ Due to: 23.04.2015

"Lo verdaderamente nuevo da miedo o maravilla."

Julio Cortázar, Historia de Cronopios y Famas

1 Modularity on T^2

In string pertubation theory the one loop graph for closed strings has topology $\Sigma_{g=1} \simeq T^2$. A torus can be constructed by modding out a two dimensional lattice Λ out of \mathbb{C} . This means that points in \mathbb{C} differing by $\lambda \in \Lambda$ are identified

$$\mathbb{C} \ni z \sim z + \lambda \,. \tag{1}$$

For a given lattice $\Lambda = \{\lambda = n_1 \ell + n_2 \tau \ell | n_1, n_2 \in \mathbb{Z}\}$ with lattice vectors ℓ and $\tau \ell$, we can specify the torus by its moduls $\tau \in \mathbb{C}$. However $SL(2,\mathbb{Z})$ transformations on τ describe the same torus. The group $SL(2,\mathbb{Z})$ is the set of matrices given by

$$SL(2,\mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \, \middle| \, a, b, c, d \in \mathbb{Z}, \, ad - bc = 1 \right\}$$
(2)

They act on $z \in \mathbb{C}$ by $\gamma z = \frac{az+b}{cz+d}$. The generators of $SL(2,\mathbb{Z})$ are given by $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. We further define $PSL(2,\mathbb{Z}) = SL(2,\mathbb{Z})/\{\pm 1\}$ and the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} | \operatorname{Im}(z) > 0\}.$

- (a) How does T and S act on \mathbb{H} ? Why is it enough to consider $PSL(2,\mathbb{Z})$? (2 points)
- (b) Show that there exists a $\gamma_0 \in SL(2,\mathbb{Z})$ such that $\operatorname{Im}(\gamma z) \leq \operatorname{Im}(\gamma_0 z)$ for all $\gamma \in SL(2,\mathbb{Z})$ and fixed $z \in \mathbb{H}$. (2.5 points)
- (c) Show that $|\gamma_0 z| \ge 1$. *Hint: Apply an S transformation on* $\gamma_0 z$ (1.5 points)
- (d) Show that $|T^n \gamma_0 z| \ge 1$ for any $n \in \mathbb{Z}$ and that one can use T transformations to achieve $-\frac{1}{2} \le \operatorname{Re}(z) \le \frac{1}{2}$. What is the fundamental domain \mathcal{F} of $SL(2,\mathbb{Z})$? (4 points)
- (e) Argue that two moduli τ and τ' differing by $SL(2,\mathbb{Z})$ transformations describe the same torus. (2 points)

The torus partition function $A_0^{g=1}$ describes the one loop vacuum amplitude of closed strings. It is given by¹

$$A_0^{g=1} = \int_{\mathcal{F}} \frac{\mathrm{d}^2 \tau}{4(\mathrm{Im}(\tau))^2} Z(\tau, \overline{\tau}),\tag{3}$$

where

$$Z(\tau,\overline{\tau}) = \frac{V_{26}}{\ell_s^{26}} \frac{1}{(\mathrm{Im}(\tau))^{12}} |\eta(\tau)|^{-48}, \quad \text{with} \quad \eta(\tau) = \mathrm{e}^{\pi i \tau/12} \prod_{n=1}^{\infty} (1 - \mathrm{e}^{2\pi i n \tau})$$
(4)

and $\tau \in \mathbb{C}$ is the moduls of the T^2 such that

$$\mathbb{C} \ni z \sim z + 1 \quad \text{and} \quad z \sim z + \tau.$$
(5)

- (f) Show $\text{Im}(\tau)$ is the area of the T^2 with moduli τ . How does the measure $\frac{d^2\tau}{4(\text{Im}(\tau))^2}$ transform under $SL(2,\mathbb{Z})$?
- (g) Show the transformation properties of $\eta(\tau)$ under the action of the generators S and T of $SL(2,\mathbb{Z})$:

$$\eta(\tau+1) = e^{\pi i/12} \eta(\tau)$$
 and $\eta(-1/\tau) = (-i\tau)^{1/2} \eta(\tau)$ (6)

and use the result to show that $A_0^{g=1}$ is invariant under $SL(2,\mathbb{Z})$. (5 points)

The torus partition function is **modular invariant** due to its transformation properties under the **modular group** $PSL(2,\mathbb{Z})$. Modular invariance of closed string amplitudes can be used to uncover inconsistencies of string theories. For example we will later see, that modular invariance implies spacetime supersymmetry for the superstring.

2 Reduction to moduli of the string partition function

This exercise is a continuation of section 1.2 of **Exercise sheet 1**. Let Σ_h be a compact oriented Riemann surface of genus h. We are interested in the subspace $\mathcal{M}(\Sigma_h) \subset \mathcal{G}(\Sigma_h)$, containing all conformal equivalence classes of metrics, called the **moduli space**. Denoting the set of Weyl scalings as $Weyl(\Sigma_h)$ and the set of diffeomorphisms as $Diff(\Sigma_h)$, the moduli space is represented as

$$\mathcal{M}(\Sigma_h) = \frac{\mathcal{G}(\Sigma_h)}{Weyl(\Sigma_h) \times Diff(\Sigma_h)}.$$
(7)

In general the infinitesimal variation of a metric $g(t_i) \in \mathcal{G}_{\Sigma_h}$ is given by

$$\delta g_{ab} = \delta g_{ab}^{\mathrm{W}} + \delta g_{ab}^{\mathrm{D}} + \delta t_i \frac{\partial}{\partial t_i} g_{ab},\tag{8}$$

where $t_i \in \mathcal{M}(\Sigma_h)$ are the **moduli parameter**. In order to integrate the string partition function only over physically inequivalent metrics, we need to find an appropriate gauge slice in $\mathcal{G}(\Sigma_h)$. Therefore we first need to find a slice $\tilde{\mathcal{G}}(\Sigma_h)$ which contains all equivalence classes of metrics related by Weyl transformations. Then the gauge slice lies in $\tilde{\mathcal{G}}(\Sigma_h)$ and is chosen in such a way that a transformation $\exp(P\vec{v})$ on a point $\tilde{g}_{ab} \in \{\text{gauge slice}\}$ leads to a point \hat{g}_{ab} still in $\tilde{\mathcal{G}}(\Sigma_h)$ but no longer in the gauge slice.

(e) Consider a point $\tilde{g}_{ab} \in \tilde{\mathcal{G}}(\Sigma_h)$. Is it possible to act on \tilde{g}_{ab} with an element $\in Diff(\Sigma_h)$ in such a way, that on leaves the slice $\tilde{\mathcal{G}}(\Sigma_h)$?Explain why! (1 point)

¹You will derive this result in the next section.

- (f) Let us denote an infinitesimal variation changing the conformal equivalence class by δg_{ab}^{\perp} . It is therefore a tangent vector in the tangent space of $\mathcal{M}(\Sigma_h)$. Why must δg_{ab}^{\perp} be traceless? Show that $\delta g_{ab}^{\perp} \in Ker(P^{\dagger})$. Hint: How is the angle between the tangent vectors $(P\vec{v})_{ab}$ and δg_{ab}^{\perp} ? (1.5 points)
- (g) Let ψ_{ab}^{α} , $\alpha = 1, ..., \dim Ker(P^{\dagger})$ be an orthonormal basis for $Ker(P^{\dagger})$ and decompose $T_{ab}^{i}\delta t_{i}$ into a linear combination of basis vectors of $Ker(P^{\dagger})$ and vectors of Range(P). You should arrive at

$$T^{i}_{ab}\delta t_{i} = \langle \psi^{\alpha}, T^{i} \rangle \psi^{\alpha}_{ab}\delta t_{i} + \frac{\langle P\vec{v}, T^{i} \rangle}{||P\vec{v}||^{2}} (P\vec{v})_{ab}\delta t_{i}.$$
(9)

Show that the norm of δg_{ab} is given by

$$||\delta g||^2 = ||\delta \tilde{\phi}||^2 + ||P\tilde{v}||^2 + \langle \psi^{\alpha}, T^i \rangle \langle \psi^{\alpha}, T^j \rangle \delta t_i \delta t_j,$$
(10)

with

$$\delta\tilde{\phi} = \delta\phi + \nabla_c v^c + \frac{1}{2} \left(g^{cd} \delta t_i \frac{\partial}{\partial t_i} g_{cd} \right) \quad \text{and} \quad \tilde{v} = \left(1 + \frac{\langle P\vec{v}, T^i \delta t_i \rangle}{P\vec{v}, P\vec{v}} \right) \vec{v}. \tag{11}$$

$$(2 \text{ points})$$

In order to change the path integral variables from g_{ab} to ϕ , \vec{v} and t_i we use the relation

$$1 = \int \mathcal{D}g_{ab} \exp(-||\delta g||^2/2)$$

$$= J \int \mathcal{D}\phi \mathcal{D}v'^a dt^1 ... dt^n \exp\left(-[||\delta \tilde{\phi}||^2 + ||P\tilde{v}'||^2 + \langle \psi^\alpha, T^i \rangle \langle \psi^\alpha, T^j \rangle \delta t_i \delta t_j]/2\right)$$

$$(12)$$

to calculate the Jacobian J. Notice that \vec{v}' denotes elements from Range(P). Since elements from Ker(P) are orthogonal to \vec{v}' we can decompose the volume of the diffeomorphism group V_{Diff} into $V_{Diff}^{\perp} \times V_{Diff}^{CKV}$. Let χ_i , $i = 1, ..., \dim Ker(P)$ be a basis for Ker(P), then one can show that

$$V_{Diff}^{\perp} = V_{Diff} \left(\det \langle \chi_i, \chi_j \rangle \right)^{-1/2}.$$
(13)

From (12) one can show that the Jacobian for the path integral should be given by $J = \det^{1/2}(P^{\dagger}P) \frac{\det\langle \psi^{i}, T^{j} \rangle}{\det\langle \psi^{i}, \psi^{j} \rangle}$.

(h) Show that

$$\int \mathcal{D}g_{ab} \to V_{Diff} \int \mathcal{D}\phi dt^1 \dots dt^n \left(\frac{\det(P^{\dagger}P)}{\det\langle\chi^i,\chi^j\rangle}\right)^{1/2} \frac{\det\langle\psi^i,T^j\rangle}{\det\langle\psi^i,\psi^j\rangle}.$$
(14)
(0.5 points)

(i) Express the number of real moduli n by the genus h for a compact Riemann surface with no crosscaps and h ≥ 2. Hint: There are no CKV for compact Riemann surfaces with h ≥ 2. (1 point)

In the critical dimension (D = 26 for the bosonic string) the integrand becomes independent from ϕ and the integral $\int \mathcal{D}\phi = V_{Conf}$ can be absorbed into the normalization. It can be shown that the integral over the mappings X^{μ} is given by

$$\int \mathcal{D}X^{\mu} \exp\left(-\int \mathrm{d}^2 \sigma \sqrt{g} (\frac{1}{2}g^{ab}\partial_a X^{\mu}\partial_b X_{\mu}\right) = \mathcal{V}\left(\frac{\int \mathrm{d}^2 \sigma \sqrt{g}}{2\pi}\right)^{13} (\det \Delta_g)^{-13}, \quad (15)$$

with \mathcal{V} the volume of space time and $\Delta_g = -\frac{1}{\sqrt{g}} \partial_a \sqrt{g} g^{ab} \partial_b$. Putting the previous results together we find that the partition function in **Exercise sheet 1** can be expressed by

$$A_0^h = \mathcal{V}e^{\lambda(2-2h)} \int_{\mathcal{M}_h} dt^1 \dots dt^n \left(\frac{\det(P^{\dagger}P)}{\det\langle\chi^i,\chi^j\rangle}\right)^{1/2} \frac{\det\langle\psi^i,T^j\rangle}{\det^{1/2}\langle\psi^i,\psi^j\rangle} \left(\frac{2\pi}{\int d^2\sigma\sqrt{g}} \det\Delta_g\right)^{-13}.$$
 (16)

- (h) Now that we have the general expression for the partition function of a compact Riemann surface let us apply the results to the h = 1 case. The worldsheet hast the topology of a torus and A_0^h is the torus partition function.
 - (i) Show that $\chi^1 = (1,0)^T$ and $\chi^2 = (0,1)^T$ are a possible choice for Ker(P). (0.5 points)
 - (ii) Argue that n = 2 and show that T_{ab}^i are given by

$$T_{ab}^{1} = \begin{pmatrix} -\tau_{1} & 1 - \tau_{1} \\ 1 - \tau_{1} & \tau_{1} \end{pmatrix} \quad \text{and} \quad T_{ab}^{2} = \begin{pmatrix} -\tau_{2} & -\tau_{2} \\ -\tau_{2} & \tau_{2} \end{pmatrix},$$
(17)

where τ_1 and τ_2 are the moduli of the torus with the $g_{ab} = |d\sigma^1 + (\tau_1 + i\tau_2)d\sigma^2|^2$. Why do T^1_{ab}, T^2_{ab} form a possible basis for $Ker(P^{\dagger})$. Hint: Since the metric is flat $(P^{\dagger}T^i)_b = -2\partial^a T^i_{ab}$. (1.5 points)

- (iii) Next calculate det $\langle \chi^i, \chi^j \rangle$ and $\frac{\det\langle \psi^i, T^j \rangle}{\det^{1/2}\langle \psi^i, \psi^j \rangle}$ and show that $\det(P^{\dagger}P) = (\det(2\Delta_g))^2$. *Hint: First show* $(P^{\dagger}P)_{ab}v^b = 2\delta_{ab}\Delta_g v^b$ (1 point)
- (iv) Use $\det(2\Delta_g) = \frac{1}{2} \det(2) \det(\Delta_g)$ and compute A_0^h . You should arrive at (1 point)

$$A_0^h = \mathcal{V} \int_{\mathcal{M}_{T^2}} \mathrm{d}^2 \tau \frac{\tau_2^{10}}{(2\pi)^{13}} \left(\det(\Delta_g) \right)^{-12} \det(2) \,, \tag{18}$$

where det(2) can be absorbed into a counterterm by modifying the action. The computation of det(Δ_q) would lead to

$$\det \Delta_g = \tau_2^2 e^{-\pi\tau_2/3} \Big| \prod_{n=1}^{\infty} 1 - e^{2i\pi n\tau} \Big|^4.$$
(19)

plugging it into A_0^h we arrive at the final result for the torus partition function

$$A_{0}^{h} = \int_{\mathcal{M}_{T^{2}}} \frac{\mathrm{d}^{2}\tau}{2\pi\tau_{2}^{2}} (2\pi\tau_{2})^{-12} \mathrm{e}^{4\pi\tau_{2}} \Big| \prod_{n=1}^{\infty} 1 - \mathrm{e}^{2i\pi n\tau} \Big|^{-48}$$

$$= \frac{1}{2} \int_{\mathcal{F}_{\mathrm{PSL}(2,\mathbb{Z})}} \frac{\mathrm{d}^{2}\tau}{2\pi\tau_{2}^{2}} (2\pi\tau_{2})^{-12} \mathrm{e}^{4\pi\tau_{2}} \Big| \prod_{n=1}^{\infty} 1 - \mathrm{e}^{2i\pi n\tau} \Big|^{-48},$$
(20)

where $\mathcal{F}_{PSL(2,\mathbb{Z})}$ is the fundamental domain of the modular group $PSL(2,\mathbb{Z})$. Notice that integrating over $\mathcal{F}_{PSL(2,\mathbb{Z})}$ leaves an unfixed residual gauge freedom given by the diffeomorphism $\sigma^1 \to -\sigma^1$, $\sigma^2 \to -\sigma^2$. Therefore a factor of 1/2 is necessary to remove the over-counting.