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1 Modularity on T 2

In string pertubation theory the one loop graph for closed strings has topology Σg=1 ' T 2. A
torus can be constructed by modding out a two dimensional lattice Λ out of C. This means that
points in C differing by λ ∈ Λ are identified

C 3 z ∼ z + λ . (1)

For a given lattice Λ = {λ = n1`+ n2τ`|n1, n2 ∈ Z} with lattice vectors ` and τ`, we can specify
the torus by its moduls τ ∈ C. However SL(2,Z) transformations on τ describe the same torus.
The group SL(2,Z) is the set of matrices given by

SL(2,Z) =

{
γ =

(
a b
c d

) ∣∣∣∣∣a, b, c, d ∈ Z, ad− bc = 1

}
(2)

They act on z ∈ C by γz = az+b
cz+d . The generators of SL(2,Z) are given by S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
. We further define PSL(2,Z) = SL(2,Z)/{±1} and the upper half-plane

H = {z ∈ C|Im(z) > 0}.

(a) How does T and S act on H? Why is it enough to consider PSL(2,Z)? (2 points)

(b) Show that there exists a γ0 ∈ SL(2,Z) such that Im(γz) ≤ Im(γ0z) for all γ ∈ SL(2,Z) and
fixed z ∈ H. (2.5 points)

(c) Show that |γ0z| ≥ 1.Hint: Apply an S transformation on γ0z (1.5 points)

(d) Show that |Tnγ0z| ≥ 1 for any n ∈ Z and that one can use T transformations to achieve
−1

2 ≤ Re(z) ≤ 1
2 . What is the fundamental domain F of SL(2,Z)? (4 points)

(e) Argue that two moduli τ and τ ′ differing by SL(2,Z) transformations describe the same
torus. (2 points)

1



The torus partition function Ag=1
0 describes the one loop vacuum amplitude of closed strings. It

is given by1

Ag=1
0 =

∫
F

d2τ

4(Im(τ))2
Z(τ, τ), (3)

where

Z(τ, τ) =
V26

`26
s

1

(Im(τ))12
|η(τ)|−48, with η(τ) = eπiτ/12

∞∏
n=1

(1− e2πinτ ) (4)

and τ ∈ C is the moduls of the T 2 such that

C 3 z ∼ z + 1 and z ∼ z + τ. (5)

(f) Show Im(τ) is the area of the T 2 with moduli τ . How does the measure d2τ
4(Im(τ))2

transform

under SL(2,Z)? (3 points)

(g) Show the transformation properties of η(τ) under the action of the generators S and T of
SL(2,Z):

η(τ + 1) = eπi/12η(τ) and η(−1/τ) = (−iτ)1/2η(τ) (6)

and use the result to show that Ag=1
0 is invariant under SL(2,Z). (5 points)

The torus partition function is modular invariant due to its transformation properties under
the modular group PSL(2,Z). Modular invariance of closed string amplitudes can be used to
uncover inconsistencies of string theories. For example we will later see, that modular invariance
implies spacetime supersymmetry for the superstring.

2 Reduction to moduli of the string partition function

This exercise is a continuation of section 1.2 of Exercise sheet 1. Let Σh be a compact oriented
Riemann surface of genus h. We are interested in the subspace M(Σh) ⊂ G(Σh), containing all
conformal equivalence classes of metrics, called the moduli space. Denoting the set of Weyl
scalings as Weyl(Σh) and the set of diffeomorphisms as Diff(Σh), the moduli space is represented
as

M(Σh) =
G(Σh)

Weyl(Σh)×Diff(Σh)
. (7)

In general the infinitesimal variation of a metric g(ti) ∈ GΣh
is given by

δgab = δgW
ab + δgD

ab + δti
∂

∂ti
gab, (8)

where ti ∈M(Σh) are the moduli parameter. In order to integrate the string partition function
only over physically inequivalent metrics, we need to find an appropriate gauge slice in G(Σh).
Therefore we first need to find a slice G̃(Σh) which contains all equivalence classes of metrics
related by Weyl transformations. Then the gauge slice lies in G̃(Σh) and is chosen in such a way
that a transformation exp(P~v) on a point g̃ab ∈ {gauge slice} leads to a point ĝab still in G̃(Σh)
but no longer in the gauge slice.

(e) Consider a point g̃ab ∈ G̃(Σh). Is it possible to act on g̃ab with an element ∈ Diff(Σh) in

such a way, that on leaves the slice G̃(Σh)?Explain why! (1 point)

1You will derive this result in the next section.
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(f) Let us denote an infinitesimal variation changing the conformal equivalence class by δg⊥ab. It
is therefore a tangent vector in the tangent space of M(Σh). Why must δg⊥ab be traceless?
Show that δg⊥ab ∈ Ker(P †). Hint: How is the angle between the tangent vectors (P~v)ab and
δg⊥ab? (1.5 points)

(g) Let ψαab, α = 1, ...,dimKer(P †) be an orthonormal basis for Ker(P †) and decompose T iabδti
into a linear combination of basis vectors of Ker(P †) and vectors of Range(P ). You should
arrive at

T iabδti = 〈ψα, T i〉ψαabδti +
〈P~v, T i〉
||P~v||2

(P~v)abδti. (9)

Show that the norm of δgab is given by

||δg||2 = ||δφ̃||2 + ||P ṽ||2 + 〈ψα, T i〉〈ψα, T j〉δtiδtj , (10)

with

δφ̃ = δφ+∇cvc +
1

2

(
gcdδti

∂

∂ti
gcd

)
and ṽ =

(
1 +
〈P~v, T iδti〉
P~v, P~v

)
~v. (11)

(2 points)

In order to change the path integral variables from gab to φ, ~v and ti we use the relation

1 =

∫
Dgabexp(−||δg||2/2) (12)

= J

∫
DφDv′adt1...dtnexp

(
−[||δφ̃||2 + ||P ṽ′||2 + 〈ψα, T i〉〈ψα, T j〉δtiδtj ]/2

)
to calculate the Jacobian J . Notice that ~v′ denotes elements from Range(P ). Since elements
from Ker(P ) are orthogonal to ~v′ we can decompose the volume of the diffeomorphism group
VDiff into V ⊥Diff × V CKV

Diff . Let χi, i = 1, ...,dimKer(P ) be a basis for Ker(P ), then one can
show that

V ⊥Diff = VDiff (det〈χi, χj〉)−1/2 . (13)

From (12) one can show that the Jacobian for the path integral should be given by J =

det1/2(P †P )det〈ψi,T j〉
det〈ψi,ψj〉 .

(h) Show that ∫
Dgab → VDiff

∫
Dφdt1...dtn

(
det(P †P )

det〈χi, χj〉

)1/2
det〈ψi, T j〉
det〈ψi, ψj〉

. (14)

(0.5 points)

(i) Express the number of real moduli n by the genus h for a compact Riemann surface with no
crosscaps and h ≥ 2. Hint: There are no CKV for compact Riemann surfaces with h ≥ 2.
(1 point)

In the critical dimension (D = 26 for the bosonic string) the integrand becomes independent from
φ and the integral

∫
Dφ = VConf can be absorbed into the normalization. It can be shown that

the integral over the mappings Xµ is given by∫
DXµexp

(
−
∫

d2σ
√
g(

1

2
gab∂aX

µ∂bXµ

)
= V

(∫
d2σ
√
g

2π

)13

(det∆g)
−13 , (15)

with V the volume of space time and ∆g = − 1√
g∂a
√
ggab∂b. Putting the previous results together

we find that the partition function in Exercise sheet 1 can be expressed by

Ah0 = Veλ(2−2h)

∫
Mh

dt1...dtn
(

det(P †P )

det〈χi, χj〉

)1/2
det〈ψi, T j〉

det1/2〈ψi, ψj〉

(
2π∫

d2σ
√
g

det∆g

)−13

. (16)
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(h) Now that we have the general expression for the partition function of a compact Riemann
surface let us apply the results to the h = 1 case. The worldsheet hast the topology of a
torus and Ah0 is the torus partition function.

(i) Show that χ1 = (1, 0)T and χ2 = (0, 1)T are a possible choice for Ker(P ). (0.5 points)

(ii) Argue that n = 2 and show that T iab are given by

T 1
ab =

(
−τ1 1− τ1

1− τ1 τ1

)
and T 2

ab =

(
−τ2 −τ2

−τ2 τ2

)
, (17)

where τ1 and τ2 are the moduli of the torus with the gab = |dσ1 + (τ1 + iτ2)dσ2|2.
Why do T 1

ab, T
2
ab form a possible basis for Ker(P †). Hint: Since the metric is flat

(P †T i)b = −2∂aT iab. (1.5 points)

(iii) Next calculate det〈χi, χj〉 and det〈ψi,T j〉
det1/2〈ψi,ψj〉

and show that det(P †P ) = (det(2∆g))
2.

Hint: First show (P †P )abv
b = 2δab∆gv

b (1 point)

(iv) Use det(2∆g) = 1
2 det(2) det(∆g) and compute Ah0 . You should arrive at (1 point)

Ah0 = V
∫
MT2

d2τ
τ10

2

(2π)13
(det(∆g))

−12 det(2) , (18)

where det(2) can be absorbed into a counterterm by modifying the action. The computation
of det(∆g) would lead to

det ∆g = τ2
2 e−πτ2/3

∣∣∣ ∞∏
n=1

1− e2iπnτ
∣∣∣4. (19)

plugging it into Ah0 we arrive at the final result for the torus partition function

Ah0 =

∫
MT2

d2τ

2πτ2
2

(2πτ2)−12e4πτ2
∣∣∣ ∞∏
n=1

1− e2iπnτ
∣∣∣−48

(20)

=
1

2

∫
FPSL(2,Z)

d2τ

2πτ2
2

(2πτ2)−12e4πτ2
∣∣∣ ∞∏
n=1

1− e2iπnτ
∣∣∣−48

,

where FPSL(2,Z) is the fundamental domain of the modular group PSL(2,Z). Notice that in-
tegrating over FPSL(2,Z) leaves an unfixed residual gauge freedom given by the diffeomorphism
σ1 → −σ1, σ2 → −σ2. Therefore a factor of 1/2 is necessary to remove the over-counting.
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