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The ghost system

In the lecture you considered the Faddev-Popov quantization method by fixing a gauge worldsheet
metric ĥαβ. The resulting partition function reads

Z =

∫
DXµDheiS[X,h] −→ Z =

∫
DXµDbDceiS[X,ĥ,gh] , (7.1)

where bαβ and cα are the anti-commuting ghost fields. Moreover, the action is now given by

S[X, ĥ, b, c] = SP [X, ĥ] + Sgh[b, c, ĥ] , Sgh[b, c, ĥ] := − i

2π

∫
d2σ

√
−ĥĥαβbβγ∇̂αcγ , (7.2)

where SP is the Polyakov action and Sgh is the action of the ghost system. One clearly sees that it
would have been inconsistent to simply set hαβ = ηαβ and drop the D[h] integration, as it would have
neglected the ghost contribution. To appreciate the ghost contribution, one also notices that the total
energy momentum tensor given by

Tαβ := TXαβ + T ghαβ , (7.3)

now gets a contribution T ghαβ from the ghost action, aside of the already known contribution TXαβ due to
the Polyakov action. Note that this modifies the central charge term in the Virasoro algebra obtained
in Exercise sheet 5.

For convenience we might choose the conformal gauge metric as fixed gauge, i.e. ĥαβ = ηαβ. Then
the ghost system, consisting of Grassmann odd fields, is quantized by the following canonical anti-
commutation relations1

{b++(σ, τ), c+(σ′, τ)} = 2πδ(σ − σ′) , {b−−(σ, τ), c−(σ′, τ)} = 2πδ(σ − σ′) . (7.4)

(a) From (7.2) obtain the energy momentum tensor of the ghost system T ghαβ . What would be the
equations of motion of the ghost fields? (1 Point)
Hint: Make variations over the fields in (7.2). Express your results in light-cone coordinates.

For the closed string the solutions of the equations of motion, periodic in σ with period ` are

c±(σ, τ) =
`

2π

∑
n∈Z

c±n e
− 2π

`
inσ± , b±±(σ, τ) =

(2π

`

)2∑
n∈Z

b±n e
− 2π

`
inσ± . (7.5)

Here b+n := bn , b
−
n := bn , c

+
n := cn , c

−
n := cn.

1Do not confuse here the anticommutator {· , ·} with the Poisson Brackets of previous exercises.
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(b) Using the anti-commutation relations in (7.4) derive the anti-commutations of the ghost field Fourier
modes given by (1 Point)

{bm, cn} = δm+n , {bm, bn} = {cm, cn} = 0 . (7.6)

(c) Recall Exercise sheets 2 & 3. Obtain the Virasoro generators of the ghost system as the conserved
Noether charges (1 Point)

Lghm = − `

4π2

∫ `

0
dσe−

2π
`
imσ−T gh−−(σ−) , L

gh
m = − `

4π2

∫ `

0
dσe−

2π
`
imσ+T gh++(σ+) . (7.7)

To fully promote Virasoro generators to quantum operators, we need to take into account normal
ordering ? · · · ? of the Fourier modes. Your result above should read

Classical: Lghm =
∑
n∈Z

(m− n)bm+nc−n 7→ Quantum: L̂ghm =
∑
n∈Z

(m− n) ? bm+nc−n ? . (7.8)

Here ?bmc−n? = −c−nbm and ?b−mcn? = b−mcn for m,n > 0. From now on, we drop the hats.

(d) Verify that [Lghm , L
gh
n ] = (m− n)Lghm+n for m+ n 6= 0. (1.5 Point)

Similar to Exercise Sheet 5, normal ordering effects appear when m + n = 0. This means the
Ghost Virasoro algebra is also a central extension of the classical Virasoro algebra. A central extension
ĝ ' g⊕ cC of a Lie algebra g by c satisfies

• [X,Y ]ĝ = [X,Y ]g + cP (X,Y ) , X,Y ∈ g ,

• [X, c]ĝ = 0 ,

• [c, c]ĝ = 0 ,

i.e. c belongs to the center of ĝ. Here P : g× g→ C is bilinear and antisymmetric. Similar to the case
of the Virasoro algebra of the bosonic system, we note that cghP (Lghm , L

gh
n ) = Agh(m)δm+n .

(d) Show that Agh(m) = 1
12(−26m3 + 2m) . (2.5 Point)

Let us now look into the combined matter-ghost system. The total Virasoro generators are now given
by

Lm = LXm + Lghm + aδm , (7.9)

where the last term accounts for a normal ordering ambiguity in LX0 +Lgh0 . Then the Virasoro algebra
of the total system follows

[Lm, Ln] = (m− n)Lm+n +A(m)δm+n . (7.10)

(e) A non-vanishing total A(m) translates to an anomaly of the local Weyl transformations. Verify
that this anomaly is absent if and only if d = 26 and a = −1. (1 Point)

The conformal group in d dimensions

Let M,N be smooth d-dimensional manifolds with metrics g and h respectively. A local diffeomorphism
of open sets φ : U ⊂M → φ(U) ⊂ N , is called a local conformal transformation if

φ∗h = Λ · g (7.11)

where Λ is a smooth scale function Λ : U → R>0. For simplicity, consider the Euclidean d-dimensional
spacetime Rd,0 with metric ηµν = diag(1, ..., 1), µ,ν = 1, ..., d. Then, a conformal transformation of
coordinates leaves the metric tensor invariant up to a scale, i.e.,

η′µν(x′µ) = ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(xµ)ηµν(xµ) . (7.12)
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It preserves angles between any two arbitrary vectors on spacetime.

In this exercise, you will familiarize yourself with the conformal group in d dimensions and its algebra.
Notice that it contains the Poincaré group as a subgroup (when Λ(xµ) = 1).

(a) Show that the consequence of requiring that an infinitesimal coordinate transformation

xµ → x′µ = xµ + εµ(xµ), ε(xµ)� 1, (7.13)

is conformal (i.e., that it satisfies (7.12)) leads to (1 Point)

∂µεν + ∂νεµ = fηµν , (7.14)

where

f =
2

d
(∂ · ε), ∂ · ε = ∂µε

µ . (7.15)

(b) Take the partial derivative ∂ρ of (7.14), permute the indices of this resulting equation to find two
similar equations. Now take a convenient linear combination of these three equations to find
(0.5 Point)

2∂µ∂νερ = ηνρ∂µf + ηρµ∂νf − ηµν∂ρf . (7.16)

(c) Contract (7.16) with ηµν and take ∂ν of the resulting expression. Moreover, take ∂2 of (7.14).
Combine these results to get (0.5 Point)

(2− d)∂µ∂νf = ηµν∂
2f . (7.17)

Contracting (7.17) further with ηµν leads to

(d− 1)∂2f = 0 . (7.18)

From (7.18), one clearly sees that, for d = 1, there is no constraint on the function f . This means that
any transformation in one dimension is conformal2. The 2-dimensional case will be studied in the next
exercise. Let us now focus on the case d ≥ 3.

(d) Equations (7.17) and (7.18) imply that ∂µ∂νf = 0, i.e., f is a linear function in the coordinates xµ,
f(xµ) = A+Bµx

µ. Explain why this condition on f implies that εµ can be written as

εµ = aµ + bµνx
ν + cµνρx

νxρ , cµνρ = cµρν , (7.19)

where conditions on the coefficients aµ, bµν and cµνρ will be determined below. (0.5 Point)

Since (7.14) – (7.16) hold for all xµ, we can treat each power of xµ in (7.19) separately.

(e) Show that: (1.5 Point)

(i) there are no constraints on the constant term aµ;

(ii) substitution of the linear term of (7.19) in (7.14) implies

bµν + bνµ =
2

d
bρρηµν ; (7.20)

(iii) substitution of the quadratic term of (7.19) in (7.16) implies

cµνρ = ηµρbν + ηµνbρ − ηνρbµ , bµ :=
1

d
cσσµ . (7.21)

2 In fact the notion of angle does not even exist in one dimension.
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The term aµ gives rise to an infinitesimal translation.
Moreover, (7.20) implies that bµ can be separated into the sum of an antisymmetric part and a pure
trace part as follows

bµν = mµν + αηµν , mµν = −mνµ . (7.22)

The antisymmetric part gives rise to infinitesimal rotations whereas the pure trace part gives rise to an
infinitesimal scale transformation.
The infinitesimal transformation associated to cµνρ is given by

x′µ = xµ + 2(b · x)xµ − bµx2 (7.23)

and it receives the name of special conformal transformation (SCT).
To each infinitesimal transformation, one gets a finite one, from which the generators of the conformal
group can be identified.

The table below summarizes the finite conformal transformations together with the corresponding
generators of the conformal group (translations and rotations form the usual Poincaré group).

Transformations Generators

Translation x′µ = xµ + aµ Pµ = −i∂µ

Rotation x′µ = Mµ
ν xν Lµν = i(xµ∂ν − xν∂µ)

Dilation x′µ = αxµ D = −ixµ∂µ

SCT x′µ = xµ−bµx2
1−2b·x+b2x2 Kµ = −i(2xµxν∂ν − x2∂µ)

The generators of the conformal group obey the conformal algebra given below

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i(ηµνD − Lµν)

[Kρ, Lµν ] = i(ηρµKν − ηρνKµ)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ)

(7.24)

(f) Check the first four relations of (7.24). Use [xµ, Pν ] = iηµν . (2 Points)

In order to put the conformal algebra above into a simpler form, we define the following generators

Jµν = Lµν , J−1,µ =
1

2
(Pµ −Kµ) ,

J−1,0 = D , J0,µ =
1

2
(Pµ +Kµ) .

(7.25)

It is not hard to show that the generators above satisfy the algebra of SO(d+ 1, 1), i.e.,

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) , (7.26)

where ηab = diag(−1, 1, 1, ..., 1).
In the similar case of Minkowski spacetime Rd−1,1, where ηab = diag(−1,−1, 1, ..., 1), the commutation
relations satisfy the algebra of SO(d, 2).
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