Theoretische Physik IV (Statistische Physik)

Vorlesung: PD Dr. Štefan Förste Übungsleitung: M.Sc. Fabian Fischbach http://www.th.physik.uni-bonn.de/people/fischbach/ws1819/tp4

-Hausaufgaben-

Abgabe der Hausaufgaben: Di./Mi. 08./09.01.2019 (in den Übungen) Besprechung der Hausaufgaben: Di./Mi. 15./16.01.2019 (in den Übungen)

H.11.1 Gas aus zweiatomigen Molekülen II (14 Punkte)

Wir betrachten erneut das Gas aus zweiatomigen Molekülen aus Aufgabe H10.2. Im Folgenden sollen die Beiträge zur spezifischen Wärmekapazität C_V aus Molekülrotationen und relativen Schwingungen der Atome im Molekül berechnen werden. Für die inneren Energieniveaus $\varepsilon_i = \varepsilon_{\text{vib}} + \varepsilon_{\text{rot}} + \varepsilon_{\text{el}}$ eines jeden Moleküls betrachten wir Rotationsbeiträge¹

$$\varepsilon_{\text{rot}} = \frac{\hbar^2 l(l+1)}{2I} , \quad l = 0, 1, 2, \dots , \quad m = -l, -l+1, \dots, l-1, l$$
 (1)

mit konstant angenommenem Trägheitsmoment I und Drehimpulsquantenzahlen l,m sowie Vibrationsenergien

$$\varepsilon_{\text{vib}} = \hbar\omega \left(n + \frac{1}{2} \right) , \quad n = 0, 1, 2, \dots$$
 (2)

mit konstant angenommener Vibrationsfrequenz ω . Für kleine Temperaturen $T \ll \varepsilon_{\rm diss}/k_{\rm B}$ sind die Moleküle nicht dissoziiert und müssen sich im elektronischen Grundzustand (Energie $\varepsilon_{\rm el}^0$) befinden, da die elektronische Anregungsenergie im Bereich der Dissoziationsenergie $\varepsilon_{\rm diss}$ liegt. Es sind also unter genannten Annahmen noch zwei Beiträge zur Zustandssumme $Z_{\rm i}$ der inneren Freiheitsgrade zu berechnen:

$$Z_{\rm i} = \exp\left(-\frac{\varepsilon_{\rm el}^0}{k_{\rm B}T}\right) Z_{\rm rot} Z_{\rm vib} \ .$$
 (3)

Vibrationsbeitrag

- a) Berechnen Sie die Zustandssumme Z_{vib} und drücken Sie das Ergebnis durch die Temperatur $\Theta_{\text{v}} := \hbar \omega / k_{\text{B}}$ aus. (1 Punkt)
- b) Bestimmen Sie hieraus die zugehörige innere Energie E_{vib} . (1 Punkt)
- c) Finden Sie C_V^{vib} , skizzieren Sie dessen Abhängigkeit von T/Θ_v und bestimmen Sie das Verhalten in den Grenzfällen $T/\Theta_v \gg 1$ und $T/\Theta_v \ll 1$. (3 Punkte)

¹Die Born-Oppenheimer-Näherung liefert für heteronukleare zweiatomige Moleküle wie HCl eine effektive Einteilchen-Schrödingergleichung für die Relativkoordinaten der Kernpositionen, welche in Kugelkoordinaten auf den bekannten Zentrifugalterm $\hbar^2 l(l+1)/(2m_{\rm red}r^2)$ im effektiven Potential führt, siehe hierzu z. B. Kap. 15 in F. Schwabl, Quantenmechanik: Eine Einführung, Springer 2007 (7. Auflage). Da der Kernabstand r neben der reduzierten Masse $m_{\rm red}$ in das Trägheitsmoment $I = m_{\rm red}r^2$ eingeht, sind Rotations- und Schwingungsfreiheitsgrade prinzipiell gekoppelt, wir wollen hier aber annehmen, dass diese Kopplung schwach ist und werden sie daher vernachlässigen.

Rotationsbeitrag

- d) Berechnen Sie $Z_{\rm rot}$ zunächst approximativ im Grenzfall $T \ll \Theta_{\rm r}$, indem Sie die dominierenden Terme identifizieren. Hierbei wurde $\Theta_{\rm r} := \hbar^2/(Ik_{\rm B})$ gesetzt. (1 Punkt)
- e) Leiten Sie für $T\gg\Theta_{\rm r}$ unter Nutzung der Euler-MacLaurin-Summationsformel in der Form

$$\sum_{l=0}^{\infty} f(l) \approx \int_0^{\infty} f(l) dl + \frac{1}{2} f(0) - \frac{1}{12} f'(0) + \frac{1}{720} f^{(3)}(0)$$
 (4)

das Hochtemperaturverhalten von $Z_{\rm rot}$ ab.

(2 Punkte)

- f) Bestimmen Sie hieraus die zugehörige innere Energie $E_{\rm rot}$ in genannten Grenzfällen.
- g) Finden Sie C_V^{rot} in genannten Grenzfällen. (1 Punkt)

Größenvergleich

- h) Zeigen Sie durch qualitative Überlegungen bzw. eine Abschätzung der Größenordnungen der Energiebeiträge $\varepsilon_{\rm el}$, $\varepsilon_{\rm vib}$ und $\varepsilon_{\rm rot}$ (bzw. derer dimensionsbehafteter Koeffizienten), dass diese je etwa im Verhältnis $(m_e/m_{\rm Kern})^{-1/2}$ stehen.

 <u>Hinweis:</u> Nehmen Sie an, dass das Molekül eine typische Abmessung a hat. Hier werden nur einfachste Formeln benötigt.

 (2 Punkte)
- i) Folgern Sie eine größenordnungsmäßige Separation der charakteristischen Temperaturen $\Theta_{r,v}$ und skizzieren Sie den Temperaturverlauf von $C_V = C_V^{trans} + C_V^{rot} + C_V^{vib}$.

 <u>Hinweis:</u> Der Translationsbeitrag wurde bereits in H10.2 bestimmt.

(1 Punkt)

H.11.2 Wechselwirkendes Gas

(8 Punkte)

Wir betrachten in dieser Aufgabe ein Gas aus $N\gg 1$ Teilchen, deren Wechselwirkung durch ein Paarpotential U beschrieben werden soll. Das kanonische Ensemble habe die Temperatur T und sei im Volumen V eingeschlossen. Die Hamilton-Funktion sei nun

$$H(x,p) = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m} + \sum_{\substack{i,j=1\\i < j}}^{N} U(|\vec{x}_i - \vec{x}_j|)$$
 (5)

und wir betrachten die Zustandssumme

$$Z(T, V, N) = \frac{1}{N! h^{3N}} \int \exp\left[-\beta H(x, p)\right] d^{3N} x d^{3N} p.$$
 (6)

a) Wir schreiben $U_{ij} := U(|\vec{x}_i - \vec{x}_j|)$. Zeigen Sie

$$Z = \frac{1}{N!} \left(\frac{2\pi m k_{\rm B} T}{h^2} \right)^{3N/2} \left[V^N + V^{N-2} \sum_{i < j} \int \left[\exp(-\beta U_{ij}) - 1 \right] d^3 x_i d^3 x_j + \dots \right] , \quad (7)$$

indem Sie Z in den Faktoren $f_{ij} := [\exp(-\beta U_{ij}) - 1] \ll 1$ entwickeln. <u>Hinweis:</u> Es gilt $\prod_{i < j} (1 + f_{ij}) = 1 + \sum_{i < j} f_{ij} + \dots$ (3 Punkte) b) Zeigen Sie

$$Z = \frac{1}{N!} \left(\frac{2\pi m k_{\rm B} T}{h^2} \right)^{3N/2} V^N \left[1 + \frac{N^2 u}{2V} + \dots \right]$$
 (8)

mit

$$u := 4\pi \int_0^\infty r^2 \left[\exp(-\beta U(r)) - 1 \right] dr . \tag{9}$$

Folgern Sie durch Berechnung des Drucks die thermische Zustandsgleichung

$$P \approx \frac{Nk_{\rm B}T}{V} \left(1 - \frac{u}{2} \frac{N}{V} \right) . \tag{10}$$

Vergleichen Sie mit der Gleichung des idealen Gases.

(3 Punkte)

c) Berechnen Sie für das Sutherland-Potential

$$U(r) = \begin{cases} \infty & r \le r_0 \\ -U_0 \left(\frac{r}{r_0}\right)^6 & r > r_0 \end{cases} , \tag{11}$$

welches die Teilchen als harte, sich anziehende Kugeln des Radius $r_0/2$ auffasst, näherungsweise den Koeffizient u im Falle $\beta U_0 \ll 1$ (hohe Temperatur bzw. schwache Anziehung). Folgern Sie dann

$$P \approx \frac{Nk_{\rm B}T}{V} \left[1 + \frac{2\pi r_0^3}{3V} \left(1 - \frac{U_0}{k_{\rm B}T} \right) \right]$$
 (12)

(2 Punkte)

Vergleich mit van der Waals-Gleichung Wir wollen Gleichung (12) mit der Zustandsgleichung von van der Waals² vergleichen, welche wir in der Form

$$P = \frac{Nk_{\rm B}T}{V - V_0} - \frac{N^2a}{V^2} \tag{13}$$

angeben.

d) Vernachlässigen Sie Terme der Ordnung $(V_0/V)^2$ in Gl. (13) und bestimmen Sie durch Vergleich mit Gl. (12) die Parameter (a, V_0) in Abhängigkeit von (r_0, U_0) . (1 Punkt)

H.11.3 Isothermen beim van der Waals-Gas (3 Punkte)

Die Isothermen eines Gases (N fest), das der van der Waals-Zustandsgleichung (13) genügt, zeigen qualitativ unterschiedliches Verhalten für hohe und niedrige Temperaturen.

- a) Betrachten Sie die Schar der Isothermen P(V;T): Welche Bedingung an T muss für die Existenz eines lokalen Extremums von P in V erfüllt sein? Bestimmen Sie die kritische Temperatur T_c sowie den kritischen Punkt (P_c,V_c) , der sich bei $T=T_c$ als Sattelpunkt manifestiert. Drücken Sie Ihre Ergebnisse dabei in den Parametern (a,b) aus, wobei $b:=V_0/N$ ist. (2 Punkte)
- b) Plotten Sie die Isothermen unterhalb, bei der und oberhalb der kritischen Temperatur und zeichnen Sie den kritischen Punkt ein. Als Achsennormierung sind P/P_c und v/v_c geeignet (mit v = V/N usw.). (1 Punkt)

²Für eine Herleitung siehe z. B. Abschnitt 5.4.1 in F. Schwabl, *Statistische Mechanik*, Springer 2006 (3. Auflage).

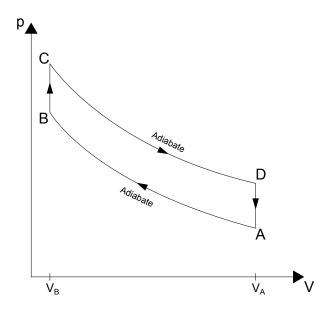


Abbildung 1: Der Otto-Kreisprozess im p-V-Diagram.

H.11.4 Der Otto-Zyklus

(6 Punkte)

Der Otto-Zyklus ist in Abbildung 1 im p-V-Diagramm gezeigt. Die vier Schritte sind:

- adiabatische Komprimierung,
- isochore Erwärmung,
- adiabatische Expansion und
- isochore Abkühlung.
- a) Bestimmen Sie die Arbeit und den Wärmetransfer in jedem Schritt unter der Annahme, dass das Arbeitsmedium ein ideales Gas sei.

 <u>Hinweis:</u> Zur Erinnerung: $E = \frac{f}{2}Nk_{\rm B}T$. Verwenden Sie ferner die Adiabatengleichung.

 (4 Punkte)
- b) Zeigen Sie unter Verwendung der Ergebnisse aus Teil a), dass der Wirkungsgrad durch

$$\eta = 1 - \left(\frac{V_{\rm B}}{V_{\rm A}}\right)^{\kappa - 1}$$

gegeben ist, wobei $\kappa = \frac{f+2}{f}$ der Adiabaten
exponent des idealen Gases ist. (2 Punkte)