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Exercise 02.1: Hydrodynamic Energy-Momentum Tensor (9 credits)
A comoving observer in a perfect fluid will, by definition, see his surroundings as isotropic.
In this frame, the energy-momentum tensor will be:

T̃ µν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


where ρ is the density and p the pressure of the fluid.

(a) Calculate the energy-momentum tensor T µν for an observer at rest. Assume the
comoving observer’s velocity to be ~v. (3 credits)

(b) Show that T µν can also be written as

T µν = (p+ ρ)UµUν + pηµν ,

where Uµ is the four-velocity of the fluid. (2 credits)

(c) Consider an ideal gas (point particles that only interact in local collisions). Its
energy-momentum tensor is:

T µν =
∑
N

pµNp
ν
N

EN
δ3(~x− ~xN)

where EN is the energy of N th particle. Calculate the density ρ and pressure p for a
comoving observer. (2 credits)

(d) If the particle number density, n, is defined as

n ≡
∑
N

δ3(~x− ~xN) ,

what is the relation between ρ and p for a (2 credits)

(i) cool, non-relativistic gas

(ii) hot, extremely relativistic gas

1



Exercise 02.2: Coordinate charts for manifolds (2 credits)

(a) Argue why the circle manifold, S1, cannot be covered by a single coordinate chart.
Provide charts for this manifold. (1 credit)

(b) Can R × S1 be covered by a single chart? Provide a chart/charts for this manifold
too. (1 credit)

Exercise 02.3: Conformal manifolds (4 credits)
A conformal manifold is one which is equipped with an equivalence class of metrics with
two metrics being equivalent if they differ by a smooth positive factor. Such an equivalence
relation preserves angles but not lengths on the manifold. A manifold is conformally flat
if, at the local neighborhood of every point, the metric is conformally equivalent to a flat
metric ie. gµν = f(xµ)gµν(0) (where, g(0) is a flat metric, like Minkowski, Euclidean etc and

f is a smooth positive function).

(a) Consider a Euclidean metric on a 2-sphere with ds2 = dθ2 + sin2θ dφ2. Find a
coordinate system where this metric is conformally flat. (2 credits)

(b) Show that a manifold in three or more dimensions is not, in general, conformally flat.
(Hint: Compare the number of independent variable and the number of constraint
equations) (2 credits)

Exercise 02.4: Effective potential in Newtonian gravity (5 credits)
Consider a small body of mass m moving around a heavy (hence, stationary) body of mass
M at a distance R

(a) Derive an effective potential for the motion of the body of mass m. (Hint: Write
down the expression for the two constants of motion - Energy (KE + gravitational)
and angular momentum. Use these to eliminate the angular coordinate and rearrange
to get a form Veff = Etotal −KE) (2 credits)

(b) Show that, if its velocity is
√

2GM/R, the body of mass m will escape to infinity,
irrespective of its initial direction, unless it is moving directly towards the center of
the heavy body. (3 credits)

Remark: As you will see later, this fact that the particle escapes independent of its initial
direction does not hold in GR. Close to the horizon of a black hole, a particle must move
almost directly outwards in order to escape.
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