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Exercise 6.1: Vielbein (15 credits)
If g = gµν(x) dxµ ⊗ dxν is the usual metric (0,2)-tensor, at each point, we can always
introduce a set of abstract orthonormal basis vectors, ê(a), called vielbein (or tetrads or
non-coordinate bases) such that g(ê(a), ê(b)) = ηab at that point (note: In a Euclidean
spacetime, η is the usual Euclidean metric. In our cases below, it is Minkowski). At each
point, we can express our old coordinate basis, ∂µ ≡ ê(µ), in the new basis as: ê(µ) = eµ

a ê(a),
so that the above orthonormality condition becomes:

gµν(x) eµa(x) eνb(x) = ηab(x)

where, eµa and eµ
a are related by raising and lowering of indices with gµν and ηab. Also,

eν
a can be seen as the components of a (1,1)-tensor of mixed bases: eν

a dxν ⊗ ê(a).

(a) Justify why we can demand tensors with vielbein indices to be covariant under local
Lorentz transformations of the vielbein bases. (1 credit)

(b) Find a relation between vielbein, its spin connection coefficients and Christoffel con-
nection coefficients. (4 credits)
Hint: Take a vector in coordinate basis, X = Xµ∂µ, and write down its covariant
derivative (a (1,1)-tensor) in terms of Christoffel connection coefficients. Next, write
down the same vector in terms of vielbein, X = Xa ê(a), and its covariant derivative
(a (1,1)-tensor with mixed basis ie. dxν ⊗ ê(a)) in terms of spin connection coeffi-
cients introduced in class. Transform the latter (mixed) basis into the former (pure
coordinate) basis and compare the coefficients to get the result.

(c) Rearrange the above result to show that the covariant derivative of vielbein vanishes
ie. ∇µeν

a = 0 (3 credits)
Remark: Note that this result holds in general and does not require the connection
to be torsion-free or metric-compatible.

(d) Derive the transformation of spin connection under local Lorentz transformation (as
given in the lecture):

ωµ
a′
b′ = Λa′

aΛ
b
b′ωµ

a
b − Λc

b′∂µΛa′
c

(3 credits)
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(e) Xµ
a can be viewed as a vector-valued 1-form. Its exterior derivative, (dX)µν

a ≡
∂µXν

a − ∂νXµ
a, transforms covariantly as a (0,2)-tensor under General Coordinate

Transformation (for indices µ, ν), but not as a (1,0)-tensor under Local Lorentz Trans-
formation (for index a). Show that this problem is rectified if the expression is
modified as:

(dX)µν
a + (ω ∧X)µν

a ≡ ∂µXν
a − ∂νXµ

a + ωµ
a
bXν

b − ωνabXν
b

which transforms covariantly in all its indices. (4 credits)

Remark: As was remarked in class, vielbein provides an abstract frame to handle spinor
fields, and hence, similarities between (general coordinate transformations in) GR and
(local gauge transformations in) gauge theories are easier to see in this formalism.

Exercise 6.2: Holonomy (5 credits)
It turns out to be possible to write down a general solution to the equation of parallel
transport,

dxµ

dλ
∂µV

ν +
dxµ

dλ
ΓνµσV

σ = 0.

We begin by noticing that for some path γ connecting the points λ and λ0, solving the
above equation amounts to finding a matrix P µ

ρ(λ, λ0), called the parallel propagator,
such that, V µ(λ) = P µ

ρ(λ, λ0)V
ρ(λ0). Clearly, P µ

ρ depends on the path γ.

1. Derive the following (where, Aµρ = −Γµσρ
dxσ

dλ
):

P µ
ρ(λ, λ0) = δµρ +

∫ λ

λ0

Aµσ(η)P σ
ρ(η, λ0)

(2 credits)

2. Show that solving the above by iterating along the path (ie. taking the right-hand
side and plugging it into itself repeatedly), one arrives at the following:

P µ
ρ(λ, λ0) = δµρ +

∞∑
n=1

1

n!

∫ λ

λ0

∫ λ

λ0

...

∫ λ

λ0

P [A(ηn)A(ηn−1)...A(η1)]d
nη

where, the path-ordering symbol, P [A(ηn)A(ηn−1...A(η1)], stands for the product of
n matrices, A(ηi), ordered in such a way that the largest value of ηi is on the left and
each subsequent value of ηi is less that or equal to the previous one. (3 credits)
Hint: You may use the fact that there are n! number of n-dimensional right-angled
triangles (or n-simplices) in an n-cube.
Remark: This is usually expressed in the following form:

P µ
ρ(λ, λ0) = P exp

(
−
∫ λ

λ0

Γµσρ
dxσ

dη
dη

)
Remarks: Consider a path that starts and ends at the same point ie. a loop. If the
connection is metric-compatible, the resulting matrix will just be a Lorentz transformation
on the tangent space at that point. This transformation is known as the holonomy of the
loop. Knowing the holonomy of every possible loop is equivalent to knowing everything
about the metric. The corresponding (trace of the) loop parallel propagator in QFT is
called a Wilson loop. Both Loop Quantum Gravity and String Theory were originally
motivated by holonomies in GR and in QCD, respectively.

2


