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Exercise 1: Overview (10 credits)

Give short answers to the following questions:

(a) What is difference in the description of General Relativity as compared to the de-
scription of the other fundamental forces? (1 credit)

(b) Give 4 experimental evidences for General Relativity. (2 credits)

(c) Define a (p,q) tensor. Why are the Christoffel symbols not a tensor? What are
they? (3 credits)

(d) What are Riemann Normal coordinates. Why does the curvature in general not
vanish in Riemann Normal coordinates? (2 credits)

(e) Which forms of energy are allowed in a Ricci–flat space? Why? (2 credits)

Exercise 2: Electromagnetism in covariant form (20 credits)

In this exercise we consider electromagnetism in its covariant form. In order to do so,
we combine the electric potential φ and the magnetic potential ~A into the four–potential
Aµ = (φ, ~A). Similarly we define the four–current jµ = (ρ,~j) with electric charge density
ρ and current density ~j. The electro–magnetic field strength derived from Aµ is F µν :=
∂µAν − ∂νAµ and in components given by

F µν(t,x) =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0


(a) By looking at the Lorentz transformation of F µν , argue that neither ~E nor ~B are

well–defined vectors. (1.5 credits)

(b) Write down a Lorentz-invariant kinetic term, mass term, and source term for Aµ.
Argue why the terms are Lorentz invariant. (2.5 credits)

(c) Write down a gauge transformation for the vector potential. Which of the above
terms are invariant under this transformation, which are not? (3 credits)
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(d) Define the dual field strength tensor as F̃ µν := 1
2
εµνρσFρσ. Calculate F̃ µν . (3 credits)

(e) Show that Maxwells equations can be written as (6 credits)

∂µF
µν = −jν , ∂µF̃

µν = 0 . (1)

(f) What is the relation between F µν and F̃ µν? Consider the dual version of the above
equations:

∂µF
µν = 0 , ∂µF̃

µν = −jνdual .

What do the Maxwell equations for such a configuration look like? What would be
the physical consequences if this equation was true? (2 credits)

(g) What are the consequences of adding a term F µνF̃µν to the Lagrangian? Explain.
Hint: Use Maxwell’s equations (1). (2 credits)

Exercise 3: Stereographic Projection (25 credits)

Consider the two–sphere S2:

(x0, x1, x2) : (x0)2 + (x1)2 + (x2)2 = 1 .

A coordinate chart on S2\{(1, 0, 0)} is given by the map xa(ξi), (a = 0, 1, 2; i = 1, 2):

x0 =
(ξ1)2 + (ξ2)2 − 1

(ξ1)2 + (ξ2)2 + 1
, xi =

2ξi

(ξ1)2 + (ξ2)2 + 1
,

which corresponds to a stereographic projection from the north pole onto a plane through
an equator.

(a) Take now ξ1 = r cosφ and ξ2 = r sinφ and show that the induces metric satisfies:
(4 credits)

ds2 =
4

(1 + r2)2
(dr2 + r2dφ2) .

(b) Show that the stereographic projection is only invertible on S2\{(1, 0, 0)} and deter-
mine its inverse. How many coordinate patches are needed to cover S2? Give these
other patches and the transformations between them. (6 credits)

(c) Show that the only non vanishing the Christoffel symbols Γλµν are

Γrrr = − 2r

1 + r2
, Γrφφ =

r(r2 − 1)

1 + r2
, Γφrφ = − r2 − 1

r(1 + r2)
.

Hint: you could use the Euler Lagrange formalism. Show that the curve r(t) =
tan{θ/2}, φ = φ0 (constant) is a geodesic. (10 credits)

(d) Compute the Ricci tensor and the curvature scalar. (5 credits)
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Exercise 4: Parallel transport (20 credits)

In this exercise we will explore geodesics, parallel transport and the Lie derivative.

(a) Give the physical motivation for introducing covariant derivatives in curved spaces?
(2 credits)

(b) Give the definition of covariant derivatives in terms of locally geodesic coordinates.
Show that it ensures the tensor property of DνVµ, where V µ is a vector. (3 credits)

(c) Why does the metric have to be covariantly costant according to the previous defi-
nition? (2 credits)

(d) Explain how the covariant derivative helps to define parallel transport. Show how
the intuitive parallel transport of vectors coincides with the given definition for a one
dimensional manifold. (2 credits)

(e) Consider the two-sphere with the chart given in Ex.3. Write down the parallel trans-
port equations for a vector T a, a = r, φ along a curve (r(t), φ(t)). Calculate the
transformation of an arbitrary vector which gets parallel transported along the curve
r = R (constant), from a point φ0 to φ0 + α. For which value of R does this curve
correspond to a geodesic? Note that in general T a(φ0) 6= T a(φ0 + 2π), argue why
this result leads to the conclusion that the sphere has non trivial holonomy. Rewrite
T a(φ0 + 2π) as T a(φ0 + 2π) = Ma

b T
b(φ0 + 2π), compute Ma

b . To which group does
this sort of transformations belong? (6 credits)

(f) Draw a graph to illustrate the concept of the Lie Derivative. Compute its value
along the direction aµ for a vector V µ. Give the vector aµ which ensures that the Lie
derivative coincides with the covariant one. (5 credits)

Exercise 5: Schwarzschild solution (25 credits)

In this exercise we will examine the Schwarzschild solution for a star. Throughout this
exercise you may want to use the formulas provided at the end of the exam.

(a) Given the general static isotropic metric ds2 = B(r)dt2−A(r)dr2 + r2dΩ2, show that
the condition for an asympotically Minkowski space is A(r) = 1/B(r). (4 credits)

(b) Consider a slow moving particle in a weak and stationary field of a star. Obtain an
expression for g00 in terms of the classical gravitational potential φ = −GM/r. Take
|dx/dτ |�|dt/dτ | and a perturbation around flat space hαβ with |hαβ|�1. (3 credits)

(c) Using the result obtained above, derive the Schwarzschild solution by finding the
expressions for A(r) and B(r). (4 credits)

(d) Employ quasi-Minkowski coordinates

x1 = r sin θ cosφ , x2 = r sin θ sinφ , x3 = r cos θ ,

to express the metric as

ds2 = B(r)dt2 − (B(r)−1 − 1)r−2(x · dx)2 − dx2.

Compute the total energy of matter and the gravitational field of the system. Use the
expressions given at the end of the exam. Could the result be expected? (3 credits)
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(e) How many Killing vectors does the obtained metric have? Explain their space–time
structure and which conserved quantities they correspond to. (4 credits)

(f) Given the Killing vectors Kµ
1 = (∂t)

µ and Kµ
2 = (∂φ)µ, compute and identify the

associated conserved quantities. (3 credits)

(g) Use the additional conserved quantity ε = −gµν dx
µ

dλ
dxν

dλ
in a geodesic to obtain the

radial dependence of a particle trajectory in the field of the star in terms of the
constants of motion. (4 credits)

Exercise 6: FRW Cosmology (20 credits)

The distribution of matter in the observable universe is homogeneous and isotropic at
scales of the order of the Hubble radius. These features are described by the maximally
symmetric Robertson-Walker metric:

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
,

with a(t) the cosmic scale factor. Within a proper rescaling of the coordinates, k can be
chosen to be +1, -1 or 0 for spaces with positive, negative and zero spatial curvature,
respectively. The non–zero components of the corresponding Ricci tensor are given by:

R00 = −3
ä

a
, Rij = −

[
ä

a
+ 2

ȧ2

a2
+
k

a2

]
gij .

(a) Consider the Einstein equation without cosmological constant

Rµν −
1

2
Rgµν = 8πGTµν .

Given the symmetries imposed on the metric, a suitable choice for the energy-
momentum tensor is T00 = ρ, Tij = −pgij. Prove that in such a case, the Einstein
equation leads to the Friedmann equations: (10 credits)

ȧ2

a2
+
ȧ2

a2
=

8πG

3
ρ ,

ȧ

a
= −4πG

3
(ρ+ p) .

(b) Use the conservation law of the energy momentum tensor to show that it results in
the first law of thermodynamics: (5 credits)

d
[
a3(ρ+ p)

]
= a3dp .

(c) For the simple equation of state p = wρ, with w independent of time, what is the
value of w for relativistic and non relativistic matter? For which values of w do we
have an accelerating universe? Show that the energy density scales as ρ ∝ a−3(1+w).

(5 credits)

4



Useful formulas

The most general metric tensor that represents an static isotropic gravitational field has
Rµν components

Rrr =
B′′(r)

2B(r)
− 1

4

(
B′(r)

B(r)

)(
A′(r)

A(r)
+
B′(r)

B(r)

)
− 1

r

(
A′(r)

A(r)

)
Rθθ = −1 +

r

2A(r)

(
−A

′(r)

A(r)
+
B′(r)

B(r)

)
+

1

A(r)

Rφφ = sin2 θRθθ

Rµν = 0, µ 6= ν

Rtt = −B
′′(r)

2B(r)
+

1

4

(
B′(r)

A(r)

)(
A′(r)

A(r)
+
B′(r)

B(r)

)
− 1

r

(
B′(r)

A(r)

)
The total energy of a gravitational field is given by its perturbation around the flat metric
hµν as

P 0 = − 1

16πG

∫ (
∂hjj
∂xi
− ∂hij

∂j

)
nir

2dΩ , r2 = xixi , ni = xi/r .
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