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H 10.1 Physics in curved spacetime and the Einstein-Hilbert action (10 points)
In the lecture you have seen that Einstein’s equation can be obtained from a variational
principle, starting with the action

S = SEH + SM =
1

16πGN

∫
d4x
√
−g R + SM ,

where SEH is called the Einstein-Hilbert action, SM describes the contribution from matter
and GN is Newton’s constant.

(a) Derive Einstein’s equation of motion by varying the action S with respect to the metric,
i.e. show that

Gµν = 8πGNTµν .

(2 points)

(b) In order to derive the result of (a) one has to drop a boundary term coming from the
variation with respect to Rµν . Explain, why this term should in general be compensated
by a boundary term, sometimes referred to as the Gibbons-Hawking term. Find the
form of such a boundary term. (2 points)

(c) How does Einstein’s equation change if one adds a cosmological constant term
SΛ = − 1

8πGN

∫
d4x
√
−gΛ to the action? Compare your result to splitting the energy

momentum tensor into a matter piece and a vacuum piece Tµν = Tmat.
µν +T vac.

µν , where the
vacuum energy momentum tensor is that of a perfect fluid with pressure p and density
ρ. What is the meaning of the cosmological constant in this picture? (2 points)

(d) Assume the matter part to describe a scalar field φ in a potential V (φ), i.e.

SM =

∫
d4x
√
−g
(

1

2
∂µφ∂

µφ− V (φ)

)
.

What is the equation of motion for φ? Calculate the energy-momentum tensor.
(2 points)
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(e) Show in general that a theory which is invariant under general coordinate transforma-
tions has a covariantly constant energy-momentum tensor, i.e.

∇µT
µν = 0 .

(2 points)

H 10.2 Light deflection (12 points)
The motion of a particle around a spherical symmetric and stationary mass distribution
of mass M is described by the geodesic equation, where the background metric is chosen
to be the Schwarzschild metric

ds2 = −A(r)dt2 +B(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (1)

where

A(r) =

(
1− 2GNM

r

)
, B(r) =

(
1− 2GNM

r

)−1

,

r is the distance to the center of mass and the solution is valid for r > 2M .

(a) Keeping A(r) and B(r) general for the moment, write down the geodesic equations.
(2 points)

(b) We can use the spherical symmetry to put θ = π
2
. Integrate the geodesic equations

suitably to get

dt

dλ
=

1

A(r)
, r2 dϕ

dλ
= J = const. , B(r)

(
dr

dλ

)2

+
J2

r2
− 1

A(r)
= −E = const. ,

where λ is the parameter along the worldline. (2 points)

(c) Show that dτ 2 = Edλ2. Hence, what does this impose on E if one considers photons
or matter? (1 point)

(d) Eliminate λ from the integrals of motion obtained in part (b) to obtain a direct relation
between r and ϕ. Show that

ϕ = ±
∫ √

B(r)dr

r2
√

1
A(r)J2 − E

J2 − 1
r2

. (2)

(2 points)

Now consider a photon approaching a central mass from infinity with impact parameter b
as in figure 1. Denote by r0 the radius of its closest approach.

(e) Determine E and J in terms of r0. (1 point)
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Figure 1: Deflection of a photon approaching a central mass with impact parameter b,
∆ϕ = 2ϕ(r0)− π.

(f) Show that (2) reduces to

ϕ(r) =

∫ ∞
r

√
B(r′)√

r′2

r20

A(r0)
A(r′)

− 1

dr′

r′
. (3)

(1 point)

(g) Use (3) and the approximations for A(r) and B(r) in the Newtonian limit,
i.e. 2GNM/r � 1, to calculate the deflection angle ∆ϕ. (3 points)
Hint: Show, that to lowest order in 2GNM/r,

r2

r2
0

A(r0)

A(r)
− 1 =

[
r2

r2
0

− 1

] [
1− 2GNMr

r0(r + r0)

]
.

The following integrals may be useful∫
dx

x
√
x2 − a2

=
1

a
arccos

a

x
,

∫
dx

x2
√
x2 − a2

=

√
x2 − a2

a2x
,

∫
dx

(x+ a)
√
x2 − a2

=

√
x2 − a2

a(x+ a)
.

H 10.3 Spectral shift (8 points)
In the lecture you have already discussed gravitational redshift from the strong equivalence
principle. Here we want to reconsider this effect in a more formalized way. In order to
describe the gravitational effect we consider the spherically symmetric solution to Einstein’s
equation of a massive object with mass M (Here GN = 1), which is given by (1), as above.
Suppose that a signal is sent from an emitter at a fixed point (rE, θE, ϕE), travels along a
null geodesic and is received by a receiver at a fixed point (rR, θR, ϕR). If tE is the coordinate
time of emission and tR the coordinate time of reception, then the signal passes from the
event with coordinates (tE, rE, θE, ϕE) to the event with coordiantes (tR, rR, θR, ϕR).

(a) Draw a spacetime diagram illustrating these events. (1 point)
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(b) Let λ denote an affine parameterization of the null geodesic, with λE/R being the point
of emission/reception, respectively. Show that

dt

dλ
=

[(
1− 2M

r

)−1

gij
dxi

dλ

dxj

dλ

] 1
2

.

(2 points)

(c) Use the above results to argue that

∆tE = ∆tR ,

where ∆t = t(1)− t(2) denotes the coordiante time difference between two signals 1 and
2. (1 point)

(d) A clock situated at the position of an observer records proper time τ instead of coor-
dinate time t. Find a relation between those two notions of time and conclude that

∆τR

∆τE

=

[
1− 2M/rR

1− 2M/rE

] 1
2

.

(1 point)

(e) Suppose the emmiter is pulsating at a frequency νE = n
∆τE

, i.e. there are n pulses per
proper time interval ∆τE. Similar expressions hold for the receiver. Find the relation
between the two frequencies νE/νR. Expand this relation for rE, rR � 2M and discuss
what happens if the emitter (receiver) is nearer to the massive object than the receiver
(emitter). Compare your results to the one found in the lecture,

∆ν

ν
= gz ,

where z is the distance between emitter and receiver (note that here we are working
in units where c = 1). (3 points)

H 10.4 Inner Schwarzschild solution (10 points)
Since the Schwarzschild solution as given above is only valid outside of the spherically
symmetric mass distribution, let us here try to find a continuation which holds inside of
the massive object (e.g. a star). We will do so by modelling the object as made of an ideal
fluid1, i.e. its engery-momentum tensor is given by

Tµν = (ρ+ p)uµuν + pgµν .

For the metric we take the spherically symmetric, static2 Ansatz (c = 1)

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
.

1That is we ignore thermodynamic effects, such as heat conduction and viscosity.
2Hence ignoring radial matter currents.
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(a) Show that for matter to be at rest in these coordinates, uµ fulfills

(uµ) =
(
e−ν/2 0 0 0

)
.

(1 point)

Plugging in the well-known components of the Ricci tensor into the Einstein equation, we
arrive at the set of differential equations

−κρ = −e−λ
[
λ′

r
− 1

r2

]
− 1

r2
, (4a)

κp = e−λ
[
ν ′

r
+

1

r2

]
− 1

r2
, (4b)

κp = e−λ
[
ν ′′

2
+
ν ′ 2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

]
, (4c)

where κ = 8πGN.

(b) Show, that the conservation of the energy-momentum tensor, (∇µT )µν = 0, implies

p′ = −ν
′

2
(p+ ρ) . (5)

Since this equation is a consequence of the field equations (4), it can be used in place
of one of the three equations. (2 points)

(c) Show that the solution of (4a) is given by

e−λ(r) = 1− 2m(r)

r
+
C

r
, m(r) =

κ

2

∫ r

0

ρ(r′)r′ 2dr′ ,

where C is some integration constant. The requirement of grr to be finite at r = 0
implies C = 0. (3 points)

We still have the freedom to choose an equation of state f(ρ, p) = 0 for the fluid. For
simplicity we will here assume a constant rest-mass density

ρ = const. . (6)

Note that this equation of state certainly does not give a good stellar model. A constant
mass density is a first approximation only for small stars in which the pressure is not too
large. The spherically symmetric, static solution with the equation of state (6) is called
the interior Schwarzschild solution.
Using this equation of state, the solution of (4a) simplifies to

e−λ(r) = 1− 2m(r)

r
, m(r) =

κρr3

6
, (7)

and (5) can be integrated to give

p+ ρ = Be−ν/2 , (8)

with an integration constant B. Now we can choose a linear combination of the equations
(4) as the third independent differential equation.
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(d) Show that the linear combination −(4a)+(4b) implies[
eν/2

(
1− 2m

r

)− 1
2

]′
=

κBr

2
(
1− 2m

r

) 3
2

.

Use this to find the solution

eν/2 =
r3

4m
κB −D

√
1− 2m

r
, (9)

where D is another constant of integration. (4 points)

In total equations (7), (8) and (9) provide us with the general solution for a constant mass
density. They contain two constant of integration, B and D, which can be determined by
matching the interior Schwarzschild solution to the outer Schwarzschild solution. This is
done by simply demanding continuity of the metric gµν and its derivatives ∂σgµν . In the
present case this means continuity of eν , eλ and of p (p = 0 at r = r0).
Using the outer Schwarzschild solution as given in (1), this explicitly means

M =
1

6
κρr3

0 , D =
1

2
and B = ρ

√
1− 2M

r0

.

In summary we get the following result for the spherically symmetric gravitational field of
a star with mass density ρ = const. and radius r0:

ds2 =

−
[

3
2

√
1− 2M

r0
− 1

2

√
1− 2m

r

]2

dt2 + dr2

1− 2m
r

+ r2dΩ2 for r ≤ r0 ,

−
(
1− 2M

r

)
dt2 + dr2

1− 2M
r

+ r2dΩ2 for r > r0 ,

ρ =

{
6M
κr30

for r ≤ r0 ,

0 for r > r0 ,

p =


6M
κr30

( √
1− 2m

r
−

q
1− 2M

r0

3
q

1− 2M
r0
−
√

1− 2m
r

)
for r ≤ r0 ,

0 for r > r0 ,

where m = M
(
r
r0

)3

, M = 4π
3
GNρ r

3
0 and dΩ2 = dθ2 + sin2 θdϕ2.
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