Exercises on General Relativity and Cosmology

Priv.-Doz. Dr. Stefan Förste

http://www.th.physik.uni-bonn.de/people/forste/exercises/ss2013/gr

-Home Exercises-

H2.1 Contra- and covariant tensors

The components x^{μ} which we used in the previous exercise sheet are called *contravariant* coordinates of the four-vector x, which itself is an element of the tangent space $T_p(M)$ at a point p in a manifold¹ M. If M is an n-dimensional manifold, then $T_p(M)$ is an n-dimensional vector space for which we can write down a basis $\{\hat{e}_{(0)}, \ldots, \hat{e}_{(n-1)}\}$. Consequently each vector v in $T_p(M)$ can be written as $v = v^{\mu} \hat{e}_{(\mu)}$ where (here and always) we use *Einstein's sum convention*.

The dual vector space $T_p^*(M)$ is the space of linear maps $T_p(M) \to \mathbb{R}$ and has a basis $\{\hat{e}^{(0)}, \ldots, \hat{e}^{(n-1)}\}$, defined by

$$\hat{e}^{(\mu)}(\hat{e}_{(\nu)}) = \delta^{\mu}_{\nu}$$
.

Here we want to clarify the relation of upper and lower indices that appear in special relativity from a more general point of view. Since the following will be true in general, let us consider a general *n*-dim. vector space V with basis $\{\hat{e}_{(0)}, \ldots, \hat{e}_{(n-1)}\}$ and its dual vector space V^* with basis $\{\hat{e}^{(0)}, \ldots, \hat{e}^{(n-1)}\}$, while keeping in mind that we will encounter the case $V = T_p(M), V^* = T_p^*(M)$ in the context of general relativity. Given a symmetric bilinear form $\beta : V \times V \to \mathbb{R}$ (i.e. β is a function which is linear in both its arguments), we can define an isomorphism $\phi : V \to V^*$ by setting

$$\phi(v) = \beta(v, \cdot) \,,$$

as well as a symmetric bilinear form $\beta^* : V^* \times V^* \to \mathbb{R}$ given by

$$\beta^*(\phi(v), \phi(w)) = \beta(v, w) \,.$$

We introduce the notation

$$\beta_{\mu\nu} = \beta(\hat{e}_{(\mu)}, \hat{e}_{(\nu)}), \qquad \beta^*(\hat{e}^{(\mu)}, \hat{e}^{(\nu)}) = \beta^{*\mu\nu}$$

(a) Given a vector $v = v^{\mu} \hat{e}_{(\mu)} \in V$, show that its dual \tilde{v} is given by

$$\tilde{v} = \tilde{v}_{\mu} \hat{e}^{(\mu)}, \qquad \tilde{v}_{\mu} = \beta_{\mu\nu} v^{\nu}.$$

Given the existence of the isomorphism ϕ , the coordinates \tilde{v}_{μ} are then called *covariant* coordinates of the vector v (and one often supresses the tildes). (1 point)

(11 points)

 $^{^{1}}$ Manifolds will become important in the framework of general relativity later. For now we just regard them as some kind of spaces.

(b) Show that

$$(\beta_{\mu\nu}) = (\beta^{*\mu\nu})^{-1} .$$
(2 points)

If V is the tangent space of a *Riemannian manifold* M, one is equipped with a canonical choice for the bilinear form β , namely the metric. In the case of special relativity (i.e. $M = \mathbb{R}^{3,1}$), which we want to focus on from now on, the metric is

$$\eta_{\mu\nu} = \begin{cases} -1 & \text{for} & \mu = \nu = 0\\ 1 & \text{for} & \mu = \nu = 1, 2, 3\\ 0 & \text{for} & \mu \neq \nu \end{cases}$$

Hence, the *covariant components* of a vector v are given by

$$v_{\mu} = \eta_{\mu\nu} v^{\nu}$$

In general the metric is used to lower and raise indices, where raising indices is defined analogously through the help of $\eta^{\mu\nu}$ (from now on we suppress the *), which are, as you have shown in (b), defined to be the components of the (matrix) inverse of η , i.e.

$$(\eta^{\mu\nu}) = (\eta_{\mu\nu})^{-1}$$

- (c) Show that the components of the inverse matrix of a Lorentz transformation Λ fulfill $(\Lambda^{-1})^{\mu}{}_{\nu} = \Lambda_{\nu}{}^{\mu}$. (2 points)
- (d) How do the covariant coordinates x_{μ} of a vector x transform under a Lorentz transformation? (2 points)
- (e) Show that $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$ transforms as a covariant vector component and $\partial^{\mu} = \frac{\partial}{\partial x_{\mu}}$ as a contravariant vector component under Lorentz transformations. (2 points)

Generalizing the above definition of covariant vector components, let us define a (k, l)-tensor T as a multilinear map

$$T: \underbrace{V^* \times \cdots \times V^*}_{k \text{ times}} \times \underbrace{V \times \cdots \times V}_{l \text{ times}} \to \mathbb{R} ,$$

with components

$$T^{\mu_1\dots\mu_k}{}_{\nu_1\dots\nu_l} = T\left(\hat{e}^{(\mu_1)},\dots,\hat{e}^{(\mu_k)},\hat{e}_{(\nu_1)},\dots,\hat{e}_{(\nu_l)}\right)$$

Note that the space of (k, l) tensors forms a vector space, namely

$$\underbrace{V \otimes \cdots \otimes V}_{k \text{ times}} \otimes \underbrace{V^* \otimes \cdots \otimes V^*}_{l \text{ times}},$$

where \otimes denotes the tensor product (of vector spaces).

(f) Show that the components of a (k, l) tensor T transform under a Lorentz transformation Λ as

$$T^{\mu'_{1}\dots\mu'_{k}}_{\nu'_{1}\dots\nu'_{l}} = \left(\Lambda^{-1}\right)^{\nu_{1}}_{\nu'_{1}}\dots\left(\Lambda^{-1}\right)^{\nu_{l}}_{\nu'_{l}}\Lambda^{\mu'_{1}}_{\mu_{1}}\dots\Lambda^{\mu'_{k}}_{\mu_{k}}T^{\mu_{1}\dots\mu_{k}}_{\nu_{1}\dots\nu_{l}}.$$
(1 point)

(g) Show that the components of the metric $\eta_{\mu\nu}$ transform as a (0, 2)-tensor and that the d'Alembert operator $\Box = \partial^{\mu}\partial_{\mu}$ is a scalar. (1 point)

H 2.2 Electromagnetism

(9 points)

Maxwell's equations can be written by using Lorentz-Heaviside units and c = 1 as

$$\vec{\nabla}\cdot\vec{E}=\rho\,,\quad \vec{\nabla}\times\vec{B}=\frac{\partial\vec{E}}{\partial t}+\vec{j}\,,\quad \vec{\nabla}\cdot\vec{B}=0\,,\quad \vec{\nabla}\times\vec{E}=-\frac{\partial\vec{B}}{\partial t}\,.$$

We can make the Lorentz covariance explicit by introducing an antisymmetric tensor $F^{\mu\nu} = -F^{\nu\mu}$ defined by

$$F^{0i} = E^i \qquad F^{ij} = \sum_{k=1}^3 \epsilon^{ijk} B^k \,.$$

(a) Show that

$$\partial_{\mu}F^{\mu\nu} = -J^{\nu}$$
 and $\partial_{[\mu}F_{\nu\lambda]} = 0$

reproduces Maxwell's equations, where $(J^{\mu}) = (\rho, \vec{j})$ and [...] denotes total antisymmetrization of the indices. (3 points)

- (b) Use the transformation properties of the tensor $F_{\mu\nu}$ to deduce the transformation behaviour of \vec{E} under a boost along the x^1 -direction. (3 points)
- (c) Verify that

$$f^{\mu} \equiv \frac{\mathrm{d}p^{\mu}}{\mathrm{d}\tau} = e F^{\mu}{}_{\nu} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}$$

is the correct equation of the electromagnetic four-force f^{μ} acting on a particle of charge e and mass m. Do this by evaluating in the rest frame of the charged particle. Moreover, show that it reproduces the Lorentz force, i.e. show

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = e\left(\vec{E} + \vec{v} \times \vec{B}\right) \,. \tag{3 points}$$