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H 2.1 Contra- and covariant tensors (11 points)
The components xµ which we used in the previous exercise sheet are called contravariant
coordinates of the four-vector x, which itself is an element of the tangent space Tp(M)
at a point p in a manifold1 M . If M is an n-dimensional manifold, then Tp(M) is an
n-dimensional vector space for which we can write down a basis {ê(0), . . . , ê(n−1)}. Conse-
quently each vector v in Tp(M) can be written as v = vµê(µ) where (here and always) we
use Einstein’s sum convention.
The dual vector space T ∗

p (M) is the space of linear maps Tp(M) → R and has a basis

{ê(0), . . . , ê(n−1)}, defined by

ê(µ)(ê(ν)) = δµν .

Here we want to clarify the relation of upper and lower indices that appear in special
relativity from a more general point of view. Since the following will be true in general,
let us consider a general n-dim. vector space V with basis {ê(0), . . . , ê(n−1)} and its dual
vector space V ∗ with basis {ê(0), . . . , ê(n−1)}, while keeping in mind that we will encounter
the case V = Tp(M), V ∗ = T ∗

p (M) in the context of general relativity. Given a symmetric
bilinear form β : V × V → R (i.e. β is a function which is linear in both its arguments),
we can define an isomorphism φ : V → V ∗ by setting

φ(v) = β(v, ·) ,

as well as a symmetric bilinear form β∗ : V ∗ × V ∗ → R given by

β∗(φ(v), φ(w)) = β(v, w) .

We introduce the notation

βµν = β(ê(µ), ê(ν)) , β∗(ê(µ), ê(ν)) = β∗µν .

(a) Given a vector v = vµê(µ) ∈ V , show that its dual ṽ is given by

ṽ = ṽµê
(µ) , ṽµ = βµνv

ν .

Given the existence of the isomorphism φ, the coordinates ṽµ are then called covariant
coordinates of the vector v (and one often supresses the tildes). (1 point)

1Manifolds will become important in the framework of general relativity later. For now we just regard
them as some kind of spaces.
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(b) Show that

(βµν) = (β∗µν)−1 .

(2 points)

If V is the tangent space of a Riemannian manifold M , one is equipped with a canonical
choice for the bilinear form β, namely the metric. In the case of special relativity (i.e.
M = R3,1), which we want to focus on from now on, the metric is

ηµν =


−1 for µ = ν = 0

1 for µ = ν = 1, 2, 3

0 for µ 6= ν

.

Hence, the covariant components of a vector v are given by

vµ = ηµνv
ν .

In general the metric is used to lower and raise indices, where raising indices is defined
analogously through the help of ηµν (from now on we suppress the ∗), which are, as you
have shown in (b), defined to be the components of the (matrix) inverse of η, i.e.

(ηµν) = (ηµν)
−1 .

(c) Show that the components of the inverse matrix of a Lorentz transformation Λ fulfill
(Λ−1)

µ
ν = Λν

µ. (2 points)

(d) How do the covariant coordinates xµ of a vector x transform under a Lorentz
transformation? (2 points)

(e) Show that ∂µ = ∂
∂xµ

transforms as a covariant vector component and ∂µ = ∂
∂xµ

as a

contravariant vector component under Lorentz transformations. (2 points)

Generalizing the above definition of covariant vector components, let us define a (k, l)-
tensor T as a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
k times

×V × · · · × V︸ ︷︷ ︸
l times

→ R ,

with components

T µ1...µk
ν1...νl = T

(
ê(µ1), . . . , ê(µk), ê(ν1), . . . , ê(νl)

)
.

Note that the space of (k, l) tensors forms a vector space, namely

V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
l times

,

where ⊗ denotes the tensor product (of vector spaces).
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(f) Show that the components of a (k, l) tensor T transform under a Lorentz transforma-
tion Λ as

T µ
′
1...µ

′
k
ν′
1...ν

′
l

=
(
Λ−1

)ν1
ν′
1
. . .
(
Λ−1

)νl
ν′
l

Λµ′
1
µ1 . . .Λ

µ′
kµkT

µ1...µk
ν1...νl .

(1 point)

(g) Show that the components of the metric ηµν transform as a (0, 2)-tensor and that the
d’Alembert operator � = ∂µ∂µ is a scalar. (1 point)

H 2.2 Electromagnetism (9 points)
Maxwell’s equations can be written by using Lorentz-Heaviside units and c = 1 as

~∇ · ~E = ρ , ~∇× ~B =
∂ ~E

∂t
+~j , ~∇ · ~B = 0 , ~∇× ~E = −∂

~B

∂t
.

We can make the Lorentz covariance explicit by introducing an antisymmetric tensor
F µν = −F νµ defined by

F 0i = Ei F ij =
3∑

k=1

εijkBk .

(a) Show that

∂µF
µν = −Jν and ∂[µFνλ] = 0

reproduces Maxwell’s equations, where (Jµ) = (ρ,~j) and [... ] denotes total antisym-
metrization of the indices. (3 points)

(b) Use the transformation properties of the tensor Fµν to deduce the transformation

behaviour of ~E under a boost along the x1-direction. (3 points)

(c) Verify that

fµ ≡ dpµ

dτ
= eF µ

ν
dxν

dτ

is the correct equation of the electromagnetic four-force fµ acting on a particle of
charge e and mass m. Do this by evaluating in the rest frame of the charged particle.
Moreover, show that it reproduces the Lorentz force, i.e. show

d~p

dt
= e

(
~E + ~v × ~B

)
.

(3 points)
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