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H 4.1 Differential Forms (I) (12 points)
In this exercise we want to discuss a special class of tensors called differential forms.
They are of special importance in theoretical physics since they are useful tools in the
formulation of both general relativity and gauge theories. Let us first recapitulate the
vector space spanned by (p, q) tensors, which is the vector space of multilinear maps

V ∗ × · · · × V ∗︸ ︷︷ ︸
p times

×V × · · · × V︸ ︷︷ ︸
q times

→ R ,

denoted by Lp+q(V ∗, . . . , V ∗︸ ︷︷ ︸
p times

, V, . . . , V︸ ︷︷ ︸
q times

;R). One can show, that there is a natural isomor-

phism from this vector space to the tensor product space

V ⊗ · · · ⊗ V︸ ︷︷ ︸
p times

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q times

,

where the tensor product of vector spaces is defined as follows:
Let V ,W be vector spaces of dimension dV and dW and with bases {v(α)} and {w(i)}
respectively. Then a basis of the dV⊗W = dV · dW dimensional vector space V ⊗W is given
by the set1 {v(α) ⊗ w(i)}, i.e.

V ⊗W = {aαiv(α) ⊗ w(i) | aαi ∈ R} .

An element of V ⊗W is thus specified by its components aαi, which can be pictured as a
matrix

(
aαi
)

=

 a11 . . . a1dW

...
. . .

...
adV 1 . . . adV dW

 .

Note that altough the basis elements of the tensor product space are products of the basis
elements of the factors, a general element in V ⊗W cannot be written as a single tensor
product of an element of V and an element of W . Those element for which this is possible
are called pure tensors. Hence every tensor is a linear combination of pure tensors. The
canonical example for the appearance of tensor product spaces is entanglement in quantum
mechanics: Consider two spins which can each be up or down, the states being labeled by
|↑〉1,2 and |↓〉1,2. Then states of the 2-spin system are tensor products of the individual
spin states.

1Here v(α) ⊗ w(i) is just a formal way of writing an ordered pair.
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(a) In this example what are the pure tensors? Write down a state which is not pure.
(1 point)

Let now V = Tp(M) be the tangent space at a point p, and V ∗ = T ∗p (M) the corresponding
dual vector space, namely the cotangent space at that point. Let V and V ∗ have bases
{ê(µ)} and {θ̂(µ)} with µ = 0, . . . , d− 1. A differential form Ar of order r (or r-form) is
a totally antisymmetric (0, r)-tensor

Ar =
1

r!
Aµ1...µr θ̂

(µ1) ∧ · · · ∧ θ̂(µr) ,

where we have used the wedge product, given by

θ̂(µ1) ∧ · · · ∧ θ̂(µr) =
∑
σ∈Sr

sgn(σ) θ̂(µσ(1)) ⊗ · · · ⊗ θ̂(µσ(r)) .

Hence the wedge product is antisymmetric, θ̂µ1∧θ̂µ2 = −θ̂µ2∧θ̂µ1 and it extends to arbitrary
forms,

Ap ∧Bq =
1

p!

1

q!
Aµ1...µpBν1...νq θ̂

(µ1) ∧ · · · ∧ θ̂(µp) ∧ θ̂(ν1) ∧ · · · ∧ θ̂(νq)

=
1

(p+ q)!
(Ap ∧Bq)µ1...µp+q

θ̂(µ1) ∧ · · · ∧ θ̂(µp+q) .

So the components of the product form are given by

(Ap ∧Bq)µ1...µp+q
=

(p+ q)!

p!q!
A[µ1...µpBµp+1...µp+q ] .

The set of p-forms on the vector space V forms a vector space denoted by Ak(V ).

(b) How does a (d+ 1)-form look like if the vector space V is d-dimensional? (1 point)

(c) How many independent components does a p-form have if the vector space V is
d-dimensional? Compare this to the number of independent components of a sym-
metric (k, l)-tensor with k + l = p. (2 points)

A very important concept when dealing with forms is the exterior derivative,
d : Ap(V )→ Ap+1(V ) and its action on a p-form Ap is given by

dAp = d

(
1

p!
Aµ1...µp θ̂

µ1 . . . θ̂µp
)

=
1

p!
∂ρAµ1...µp θ̂

ρ ∧ θ̂µ1 ∧ · · · ∧ θ̂µp ,

so the components of the resulting (p+ 1)-form are

(dAp)µ1...µp+1
= (p+ 1)∂[µ1Aµ2...µp+1] .

The easiest and most prominent example of exterior derivatives are total derivatives df of
0-forms (functions) f : V → R.
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(d) Verify that the result of the exterior derivative indeed transforms as a tensor under
Lorentz transformations. Furthermore, show that d2 = 0 and that the exterior deriva-
tive satisfies a Leibniz rule,

d (Ap ∧Bq) = dAp ∧Bq + (−1)pAp ∧ dBq .

(3 points)

Now given a metric g on the d-dimensional manifold M2, we can assign a (d − p)-form
(∗A)d−p to a p-form Ap, which has components

(∗A)µ1...µd−p
=

1

p!

√
| det g| εµ1...µdg

µd−p+1ν1 . . . gµdνpAν1...νp .

This operation is called Hodge-star. You have seen in the lecture that for the case g = η
this indeed transforms as a tensor. Later we will show that

√
| det g| εµ1...µd also transforms

as a tensor for general manifolds.

(e) Compute the action of ∗∗. (1 point)

(f) Specialise to three-dimensional Euclidean space R3. Consider a scalar function φ(x)
and a vector field ~u(x) and express the usual operations grad, curl and div in form
language. Derive the well-known identities

(i) curl gradφ = 0,

(ii) div curl ~u = 0.

(iii) Let ~v be another vector field. Express the cross product ~u× ~v by forms.

(3 points)

(g) Rewrite Maxwell’s equations in form language. (1 point)

H 4.2 Euclidean Metrics (4 points)
We consider Euclidean spacetime in different coordinate systems. Calculate the metric (i.e.
the line element) in

(a) 3d spherical coordinates, (2 points)

(b) 2d polar coordinates. (2 points)

2As on sheet 2 we regard manifolds as some kind of spaces which have a tangent space at each point
p ∈M . As an easy example you can think of M = R3,1, for which the metric is η.

3


