$(9 \ points)$

Exercises on General Relativity and Cosmology

Priv.-Doz. Dr. Stefan Förste

http://www.th.physik.uni-bonn.de/people/forste/exercises/ss2013/gr

-Home Exercises-

H 6.1 Charts for S^2

The 2-sphere S^2 can be embedded in 3-dimensional Euclidean space by the defining equation

$$x^2 + y^2 + z^2 = 1$$

(a) Use the defining equation to construct *open* charts for S^2 . Give the transition functions and check that they are smooth.

Hint: Use the square-root function. Note however, that you need more than two charts. (2 points)

Another example of a manifold is given by $\mathbb{C}P^1$. It is defined as the space of all lines in \mathbb{C}^2 that pass through the origin. Note that we here refer to complex lines, i.e. copies of \mathbb{C} . An element of $\mathbb{C}P^1$ is denoted by

$$[z_1:z_2] = \{(z_1,z_2) \neq (0,0) | z_1, z_2 \in \mathbb{C}\} / \sim,\$$

where the equivalence relation \sim is given by

$$(z_1, z_2) \sim (w_1, w_2) \Leftrightarrow \exists \lambda \in \mathbb{C}^* \text{ s.t. } (z_1, z_2) = \lambda(w_1, w_2)$$

Here $\mathbb{C}^* = \mathbb{C} \setminus \{0\}.$

- (b) Show that each element in $\mathbb{C}P^1$ can be represented as either [1:a] or as [b:1]. (1 point)
- (c) For now restrict to a real picture, i.e. $\mathbb{R}P^1$. Consider \mathbb{R}^2 and draw the lines x = 1 and y = 1 (Note that these lines are not elements of the projective space!). What do the representatives from (b) correspond to in this picture? How many lines (that are elements of $\mathbb{R}P^1$) are there that do not intersect x = 1? Which representation of $\mathbb{R}P^1$ emerges from this picture? (3 points)
- (d) Conclude that we can endow $\mathbb{C}P^1$ with two charts both being isomorphic to \mathbb{C} . Show that the transition function is given by

$$\phi: \mathbb{C}^* \to \mathbb{C}^*, \qquad z_1 \mapsto z_2 = z_1^{-1}.$$

Here z_i denotes the coordinate on the respective copy of \mathbb{C} . (1 point)

(e) Show that CP¹ is diffeomorphic to S². To do so you may use the charts that are provided by the stereographic projection. *Hint: The charts for the stereographic projection are constructed in Carroll and may be used without deriving them again.*

H 6.2 Homeomorphisms Show that	(4 points)
(a) \mathbb{R} is not homeomorphic to \mathbb{R}^2 .	(1 point)
(b) S^1 is not homeomorphic to \mathbb{R} .	(1 point)
(c) S^1 is not homeomorphic to S^2 .	(1 point)
(d) the open interval (a, b) is homeomorphic to \mathbb{R} for any $a < b$.	(1 point)

H 6.3 Lie Groups

(7 points)

A Lie group G is a differentiable manifold which is endowed with a group structure such that the group operations

(i) $\cdot : G \times G \to G$, $(g_1, g_2) \mapsto g_1 \cdot g_2$

(ii)
$$^{-1}: G \to G, g \mapsto g^{-1}$$

are differentiable. Usually the product symbol is omitted: $g_1 \cdot g_2$ is written as g_1g_2 . The dimension of a Lie group G is defined to be the dimension of G as a manifold.

- (a) Show that $\mathbb{R}_+ = \{x \in \mathbb{R} | x > 0\}$ is a Lie group with respect to multiplication. (1 point)
- (b) Show that \mathbb{R} is a Lie group with respect to addition. (1 point)
- (c) Show that \mathbb{R}^2 is a Lie group with respect to addition defined by $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2).$ (1 point)
- (d) Let S^1 be the unit circle in the complex plane,

$$S^1 = \{ e^{i\theta} | \theta \in \mathbb{R} \pmod{2\pi} \}.$$

Define the group operations as $e^{i\theta}e^{i\phi} = e^{i(\theta+\phi)}$ and $(e^{i\theta})^{-1} = e^{-i\theta}$. Show that S^1 is a Lie group. (1 point)

(e) Show that the manifold of all the $n \times n$ real matrices g with non-vanishing determinant is a Lie group. This is the so called general linear group GL(n, R). Moreover, show that the manifold SL(n, R) of all $n \times n$ matrices with determinant 1 is a subgroub of GL(R, n). What are the dimensions of GL(n, R) and of SL(n, R)? (3 points)