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–Home Exercises–

In the lecture you have already seen the definition of differentiable manifolds. For com-
pleteness and to set our notation we repeat the most important concepts here.

Definiton 1. Let X be a set and T = {Ui|i ∈ I} a collection of subsets of X. The pair
(X, T ) is a topological space if T satisfies the following requirements:

(i) ∅, X ∈ T ,

(ii) If J is any subcollection of I, the set {Uj|j ∈ J} satisfies
⋃
j∈J Uj ∈ T ,

(iii) If K is any finite subcollection of I, the set {Uk|k ∈ K} satisfies
⋂
k∈K Uk ∈ T .

The Ui are called open sets and T is said to give a topology to X.

Definiton 2. Let M be a topological space. It is an m-dimensional differentiable man-
ifold, if

(i) M is provided with a family of pairs {(Ui, ϕi)|i ∈ I},

(ii) {Ui|i ∈ I} is a family of open sets which covers M , ie.
⋃
i∈I Ui = M . ϕi is a

homeomorphism from Ui onto an open subset U ′i of Rm,

(iii) given Ui and Uj such that Ui ∩ Uj 6= ∅, the map ψij = ϕi ◦ ϕ−1
j from ϕj (Ui ∩ Uj) to

ϕi (Ui ∩ Uj) is infinitely differentiable.

The pair (Ui, ϕi) is called a chart, while the whole family {(Ui, ϕi)|i ∈ I} is called an
atlas. φi is called coordinate (function) and the ψij are called transition functions
or coordinate transformations. Note also that the homeomorphism ϕi is represented
by m functions {x1(p), . . . , xm(p)} and the set {xµ(p)} is also called coordinate (of p).

Now tangent vectors are maps from (differentiable) functions f : M → R to elements of
the vector space Rm, defined via the directional derivative of f along a curve at a point
p ∈ M . Clearly the tangent vectors of a curve are in one-to-one correspondence to the
curves along which the directional derivative is taken (up to equivalence). Formalizing this
statement we arrive at

1



Definiton 3. Let M be an m-dimensional differentiable manifold. Let p ∈M and (U,ϕ) a
chart of M with p ∈ U . Let Γ = {c : [a, b]→M |0 ∈ [a, b] and c(0) = p} be a set of curves.
The tangent space Tp(M) of M at p is given by the set of equivalence classes of curves,

[c] =

{
c̃ ∈ Γ

∣∣∣∣c̃(0) = c(0) and
dϕ(c̃(t))

dt

∣∣∣∣
t=0

=
dϕ(c(t))

dt

∣∣∣∣
t=0

}
.

The elements X of the tangent space Tp(M) are called (tangent) vectors and their action
on a function f : M → R is given by

X[f ] ≡ df(c(t))

dt

∣∣∣∣
t=0

≡ Xµ ∂f(ϕ−1(x))

∂xµ
.

The Xµ are then called components of the vector X.

Remarks (without proof):

• The disjoint union of the tangent spaces to all points of the manifold
T (M) =

⋃
p∈M {(p, q)|q ∈ Tp(M)} is a vector bundle, called the tangent bundle.

• We write shorthand ∂f
∂xµ

for ∂f(ϕ−1(x))
∂xµ

.

• The last equality of definition 3 implies Xµ = dxµ(c(t))
dt

∣∣∣
t=0

.

• Tp(M) is an m-dimensional vector space with basis ∂µ ≡ ∂
∂xµ

.

• Let p ∈ Ui ∩ Uj and x = ϕi(p), y = ϕj(p). Then we have two expressions for

X ∈ Tp(M), X = Xµ ∂
∂xµ

= X̃µ ∂
∂yµ

, which are related by X̃µ = Xν ∂yµ

∂xν
.

Now since Tp(M) is a vector space there exists a dual to it whose elements are linear
functions from Tp(M) to R:

Definiton 4. Let M be a differentiable manifold, p ∈ M a point and Tp(M) the tangent
space to p. The cotangent space T ∗p (M) is the space of linear functions Tp(M) → R.
The elements of T ∗p (M) are called dual or cotangent vectors.

Remarks:

• Analogous to the case of the tangent spaces, the disjoint union of the cotangent
spaces to all points of the manifold T ∗(M) =

⋃
p∈M

{
(p, q)|q ∈ T ∗p (M)

}
is a vector

bundle, called the cotangent bundle.

• Dual vectors are differential one-forms.

• The simplest example of a one-form is the differential df of a function f : M → R.
The action of df ∈ T ∗p (M) on V ∈ Tp(M) is given by 〈df, V 〉 ≡ V [f ] = V µ ∂f

∂xµ
.

Noting that df is expressed in terms of the coordinate x = ϕ(p) as df = ∂f
∂xµ

dxµ it
is natural to regard {dxµ} as a basis of T ∗p (M). Moreover it is the dual basis, since〈
dxµ, ∂

∂xν

〉
= ∂xµ

∂xν
= δνµ.
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• Writing an arbitrary one-form ω as ω = ωµdxµ, where the ωµ are the components
of ω, one can define the inner product 〈 , 〉 : T ∗p (M)× Tp(M)→ R by

〈ω, V 〉 = ωµV
ν

〈
dxµ,

∂

∂xν

〉
= ωµV

µ .

• Just as for the case of vectors, let p ∈ Ui ∩ Uj and x = ϕi(p), y = ϕj(p). Then we

have two expressions for ω ∈ T ∗p (M), ω = ωµdxµ = ω̃νdy
ν . From dyν = ∂yν

∂xµ
dxµ we

find that they are related by ω̃ν = ωµ
∂xµ

∂yν
.

Given the existence of the tangent and cotangent space we can make use of the tensor
product of vector spaces that we defined in H 4.1, to build (q, r) tensors as elements of

Tq
r,p(M) ≡ Tp(M)⊗ · · · ⊗ Tp(M)︸ ︷︷ ︸

q times

⊗T ∗p (M)⊗ · · · ⊗ T ∗p (M)︸ ︷︷ ︸
r times

,

which can be written in terms of the above bases as

Tq
r,p(M) 3 T = T µ1...µq

ν1...νr ∂µ1 ⊗ · · · ⊗ ∂µq ⊗ dxν1 ⊗ · · · ⊗ dxνr .

In the same way we can define differential forms of rank r as completely antisymmetric
(0, r) tensors,

Ar =
1

r!
Aν1...νr dxν1 ∧ · · · ∧ dxνr .

Of course, we can define vectors and tensors to each point on the manifold in a continuous
way, which leads to

Definiton 5. Let M be an m-dimensional differentiable manifold with tangent bundle
T (M). Now assign a vector X|p to each point on M ,

X =
{
X|p ∈ Tp(M)|p ∈M

}
.

If for every smooth function f : M → R, X(f) : M → R is itself a smooth function, X
is called a vector field. Analogously if we smoothly assign a tensor to each point of the
manifold we get a tensor field.

Now for a special class of manifolds, called Riemannian manifolds it is possible to
globally define a metric:

Definiton 6. Let M be a differentiable manifold. A pseudo-Riemannian metric g on
M is a type (0, 2) tensor field on M which satisfies the following axioms at each point
p ∈M

(i) g|p (U, V ) = g|p (V, U), ∀U, V ∈ Tp(M),

(ii) if g|p (U, V ) = 0 for any U ∈ Tp(M), then V = 0.

If in addition, for all U ∈ Tp(M) it satisfies g|p (U,U) ≥ 0, where the equaility holds only
when U = 0, it is called a Riemannian metric.
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Remarks:

• Let (U,ϕ) be a chart on M , {xµ} the coordinates and p ∈ U , then g is expanded in
terms of dxµ ⊗ dxν as g|p = gµν(p) dxµ ⊗ dxν , which exactly recovers the definition

of the metric as an infinitesimal distance squared ds2.

• One usually omits the p in g unless it may cause confusion.

• For Riemannian manifolds the metric provides a canonical choice for the bilinear
form from H 2.1.

Definiton 7. Let M , N be differentiable manifolds and let f : M → N be a smooth map.
Then this map naturally induces a map

F∗ : Tp(M)→ Tf(p)(N) ,

called the differential map or push-forward of f . Let V ∈ Tp(M) and g : N → R be a
smooth function. Then the action of f∗V on g is defined by

(f∗V )[g] ≡ V [g ◦ f ] .

Furthermore, f induces a map

f ∗ : T ∗f(p)(N)→ T ∗p (M) ,

called the pull-back of f . For V ∈ Tp(M) and ω ∈ T ∗f(p)(N), the pull-back of ω by f ∗ is
defined by

〈f ∗ω, V 〉 = 〈ω, f∗V 〉 .

H 7.1 Coordinate Transformations (3 points)
How do the basis vectors of Tp(M) and T ∗p (M) transform under smooth and homeomorphic
coordinate transformations xµ 7→ x′µ(x)? How do (q, r)-tensors transform? Show that
partial derivatives ∂µWν of the components Wν of a vector W do not transform as tensor
components.

H 7.2 Pull-back and Push-forward (6 points)
Let M , N be differentiable manifolds, (U,ϕ) a chart on M , (V, ψ) a chart on N and p ∈ U .
Let f : M → N be a smooth map with f(p) ∈ V . Write x = ϕ(p) and y = ψ(f(p)).

(a) Let Tp(M) 3 V = V µ ∂
∂xµ

and f∗V = Wα ∂
∂yα

. Show that

Wα = V µ∂y
α

∂xµ
.

(2 points)
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(b) Show that for ω = ωαdyα ∈ T ∗f(p)(N), the induced one form f ∗ω = ξµdxµ ∈ T ∗p (M) has
components

ξµ = ωα
∂yα

∂xµ
.

(2 points)

(c) Assume M to be Riemmanian. Consider a curve γ : [a, b]→M,λ 7→ p(λ) and assume
for simplicity that Im γ ⊂M can be covered by a single chart. Calculate the pull-back
of the metric g onto the curve. What is the geometrical meaning of this expression?

(2 points)

H 7.3 Lie Bracket (5 points)
Let M be a differentiable manifold, (U,ϕ) a chart on M , p ∈ U , x = ϕ(p). Let X = Xµ ∂

∂xµ
,

Y = Y µ ∂
∂xµ

, Z = Zµ ∂
∂xµ

be vector fields on M . Then the Lie bracket [X, Y ] is defined by

[X, Y ]f = X[Y [f ]]− Y [X[f ]] ,

where f : M → R is a smooth function.

(a) Show that

[X, Y ]µ = Xλ∂λY
µ − Y λ∂λX

µ ,

where we write shorthand ∂µ for ∂
∂xµ

. (2 points)

(b) Show that the Lie bracket

(i) is bilinear,

(ii) is skew-symmetric,

(iii) fulfills the Jacobi identity

[[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0 .

(2 points)

(c) Show that [X, Y ] transforms as a vector field under smooth and homeomorphic coor-
dinate transformations xµ 7→ x′µ(x). (1 point)

H 7.4 Explicit Calculations on Manifolds (5 points)
Consider R3 as a manifold with flat Euclidean metric and coordinates {x, y, z}.

(a) A particle moves along a parameterized curve given by

x(λ) = cosλ , y(λ) = sinλ , z(λ) = λ .

Express the path of the curve in spherical polar coordiantes. (2 points)
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(b) Calculate the components of the tangent vector to the curve in both the Cartesian and
spherical polar coordinate systems. (2 points)

Now consider prolate spheroidal coordinates, which can be used to simplify the Kepler
problem in classical mechanics. They are given by

x = sinhχ sin θ cosφ

y = sinhχ sin θ sinφ

z = coshχ cos θ .

Consider the plane y = 0.

(c) What is the coordinate transformation matrix ∂xµ

∂x′ν
relating (x, z) to (χ, θ)? (1 point)

(d) What does the line element ds2 look like in prolate spheroidal coordinates? (1 point)
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