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—HOME EXERCISES—

Let M be a Riemannian manifold with metric g and two charts (U, ¢), (V, ) which fulfill
UNV # (. Denote the coordinates with respect to the two charts by x = ¢(p) and

y = 1¥(p), where p is any point in U or V respectively. Denote the space of vector fields on
M by X(M).

H 8.1 Properties of affine Connections (8 points)
As we have seen in the lecture, an affine connection V is a map

V: X(M)xX(M)— X(M)
(X,)Y)— VxY,
which satisfies
Vx(Y+2Z)=VxY +VxZ,
Vixiv)Z =VxZ+VyZ,

Vix)Y = fVxY,
Vx(fY)=XI[flY + fVxY,

where XY, Z € X(M), and f: M — R is a smooth function. The connection compo-
nents [, are given by

Va,0,=V,0,=T%,,0,.
Using this one finds that for X = X*9,, Y =Y*"0,,

A
VxY = X* (ZL + Y"FAW) = X1 (V,Y) 0.

TH

Now in order to define the action of the connection on general tensor fields, one first
imposes the action of Vx on a function f: M — R to be

VXf:X[f]

and then imposes the Leibniz rule,
Vx(Ti@T) = (VxT) @ Ty + T) @ (VxTs),

where X € X(M) and T}, T3 are tensor fields of arbitrary types.
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(a) Let w = w,dz” be a one-form field and X = X#0, a vector field. Derive the action of
an affine connection V on w,

(Vxw), = X*0w, — X“F)‘Wu»\ ,
by looking at Vx ((w,Y)). (2 points)

It is easy to generalize this result to tensors of arbitrary type. Let T be a (g,7) tensor.
Then

(VXT),J‘IM'UI(IV r = XpapTlulm‘uqlll...Vr + Xpl—“u’lpﬁT,{#zmluql/l...Vr _'_ v + XprquKTM1-~~Mq—1“V1'“VT

K 1eee K 1eee
- XPF ple“ qu/g...ur - = XPF pl/rTH Mqlq...z/r_l/{

1.V

(b) Consider the region U N'V. Then the affine connection V has components f‘zﬁ, given
by

d .9
Vi () ~ o

in terms of the coordinates y = 1(p). Show that the connection components are related
by (transform as)

- 0z Ozt Oy, O?xv Oy

vy YL O Yy g Y99
B = Jye gyB ogv- M + Oy*oyP Oxv

Show that this transformation rule indeed makes VxY a vector (Y, X € X(M)).

(2 points)
(c¢) Show further, that the components
(Vuw)y = MwV — FAM,/W)\
transform as tensor components, where w = w,dz"” is a one-form field. (1 point)

Now we demand that the metric g,, be covariantly constant, that is, if two vectors X and
Y are parallel transported, then the inner product between them remains constant under
parallel transport. Let V' be a tangent vector to an arbitrary curve along which the vectors
are parallel transported. Then we have

0=Vy (g(X,Y)) =V"[(Veg) (X,Y) + g (V. X,Y) + g (X, V,Y)]
— VEXPY" (Vo)

v

where we have used that V*V, X = V*V,Y = 0. Since this is true for any curves and
vectors, this means

(vﬁg)uy = 0 °

If this condition is satisfied, the connection V is said to be metric compatible.



(d) Show that for a metric compatible connection V with components I'*,, the equation

a)\g;w - FK)\,ugmz - FK}\Vgnu =0

holds. Show that this implies

K ak 1 K K
r (MV):Fuv+§(TV pt Ty y) ’

% (FNMV + Fﬂyu), TK)\M = QFK[)\M = FKAM - FKMA and

where I'"(,,) =
AL 1 KA
F;w = Eg (aMgVA + augp)\ - a)xguy)

are the Christoffel symbols.
Hint: Take a suitable linear combination of copies of the equation (ng)w = 0 with
cyclic permutations of (A, u, v). (3 points)

This implies, that the connection coefficients I' are given by
[, =15, + K",
where

Kli

1 K K K
pv §(T uv+Tu V+TV u)
is called the contorsion, whereas 7™, is called the torsion tensor. This implies, that
if the torsion tensor vanishes on a manifold M, the components of the metric connection
V are given by the Christoffel symbols. The connection is then called the Levi-Civita

connection.

H 8.2 Geodesic equation (8 points)
In the lecture we have seen that a curve is a geodesic iff there is a parameterisation such
that it parallel transports its own tangent vector. In the case in which the conection on
the manifold is given by the Levi-Civita connection, given two points, a geodesic is also
that curve ¢ connecting the points, that extremizes the length functional

M da# dxv
Lc:/ds:/ — G ————dA
(€) . o AN dA

where A is the parameter of the curve. (Note that for simplicity we assume that Imc C M
is covered by a single chart.)

(a) By varying the above functional, derive the geodesic equation

A2zt i da? da? 1 de da*

r o 1\ — T I\ a0
D2 TE D AN T edh

where e = \/ — g, S5 & (2 points)




(b) Show that if you parameterise the curve by its proper time 7 the geodesic equation is
simplified to

d2z# dx? dx?
+I*,e——=0.
dr? dr dr
(1 point)
Now, as an example, let us consider geodesics of S? with metric ds? = df? + sin?  dy?.

(c) Show, that the geodesic equations take the following form

2 2
j—;—sinﬁ(ZOSO(i—f) =0,
d?¢ do dy
CF L 9cotL S =
ds? Teco ds ds 0,
where s is the arc length. (1 point)

(d) Let 8 = 6(¢) be the equation of the geodesic. Show that the above equations can be
written in one equation as follows

do\?
d_g02 —2cotf (@> —sinfcosf =0.

(1.5 points)

(e) Define f(6) = cot @ and show that f fulfills the following differential equation

d2f
S —
d902+f

What is the general solution? What do the geodesics of S? look like? (2.5 points)

H 8.3 Geometrical meaning of the torsion tensor (4 points)
Let X = €0, and Y = ¢*0, be two infinitesimal vectors in T,(M). These vectors are
regarded as small displacements and thus define two points ¢ and s near p, whose coordi-
nates are z* + € and x* + 0" respectively. Parallel transporting X along the line ps we
obtain a vector pointing from s to some new point r; and similarly, by parallel transport
of Y along the line pq gives a vector pointing from ¢ to some new point r5. (Note: In this
exercise we consider a general connection V with components I'%,,,.)

(a) Show that the vectors sry and gry are given by
e —TH,50%" and 6" — TW3,6%"
respectively. (2 points)

(b) Now argue that the torsion tensor measures the failure of closure of the parallelogram
made up of the small displacement vectors and their parallel transports. (2 points)



