
Physikalisches Institut Exercise 8
Universität Bonn 05. June 2013
Theoretische Physik SS 2013

Exercises on General Relativity and Cosmology
Priv.-Doz. Dr. Stefan Förste

http://www.th.physik.uni-bonn.de/people/forste/exercises/ss2013/gr

–Home Exercises–

Let M be a Riemannian manifold with metric g and two charts (U, φ), (V, ψ) which fulfill
U ∩ V 6= ∅. Denote the coordinates with respect to the two charts by x = φ(p) and
y = ψ(p), where p is any point in U or V respectively. Denote the space of vector fields on
M by X(M).

H 8.1 Properties of affine Connections (8 points)
As we have seen in the lecture, an affine connection ∇ is a map

∇ : X(M)× X(M)→ X(M)

(X, Y ) 7→ ∇XY ,

which satisfies

∇X(Y + Z) = ∇XY +∇XZ ,

∇(X+Y )Z = ∇XZ +∇YZ ,

∇(fX)Y = f∇XY ,

∇X(fY ) = X[f ]Y + f∇XY ,

where X, Y, Z ∈ X(M), and f : M → R is a smooth function. The connection compo-
nents Γλνµ are given by

∇∂ν∂µ ≡ ∇ν∂µ = Γλνµ∂λ .

Using this one finds that for X = Xµ∂µ, Y = Y µ∂µ,

∇XY = Xµ

(
∂Y λ

∂xµ
+ Y νΓλµν

)
∂λ ≡ Xµ (∇µY )λ ∂λ .

Now in order to define the action of the connection on general tensor fields, one first
imposes the action of ∇X on a function f : M → R to be

∇Xf = X[f ]

and then imposes the Leibniz rule,

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2) ,

where X ∈ X(M) and T1, T2 are tensor fields of arbitrary types.
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(a) Let ω = ωνdx
ν be a one-form field and X = Xµ∂µ a vector field. Derive the action of

an affine connection ∇ on ω,

(∇Xω)ν = Xµ∂µων −XµΓλµνωλ ,

by looking at ∇X (〈ω, Y 〉). (2 points)

It is easy to generalize this result to tensors of arbitrary type. Let T be a (q, r) tensor.
Then

(∇XT )µ1...µq
ν1...νr

= Xρ∂ρT
µ1...µq

ν1...νr +XρΓµ1
ρκT

κµ2...µq
ν1...νr + · · ·+XρΓµqρκT

µ1...µq−1κ
ν1...νr

−XρΓκρν1T
µ1...µq

κν2...νr − · · · −XρΓκρνrT
µ1...µq

ν1...νr−1κ

(b) Consider the region U ∩ V . Then the affine connection ∇ has components Γ̃γαβ, given
by

∇ ∂
∂yα

(
∂

∂yβ

)
= Γ̃γαβ

∂

∂yγ
,

in terms of the coordinates y = ψ(p). Show that the connection components are related
by (transform as)

Γ̃γαβ =
∂xλ

∂yα
∂xµ

∂yβ
∂yγ

∂xν
Γνλµ +

∂2xν

∂yα∂yβ
∂yγ

∂xν
.

Show that this transformation rule indeed makes ∇XY a vector (Y,X ∈ X(M)).
(2 points)

(c) Show further, that the components

(∇µω)ν = ∂µων − Γλµνωλ

transform as tensor components, where ω = ωνdx
ν is a one-form field. (1 point)

Now we demand that the metric gµν be covariantly constant, that is, if two vectors X and
Y are parallel transported, then the inner product between them remains constant under
parallel transport. Let V be a tangent vector to an arbitrary curve along which the vectors
are parallel transported. Then we have

0 = ∇V (g(X, Y )) = V κ [(∇κg) (X, Y ) + g (∇κX, Y ) + g (X,∇κY )]

= V κXµY ν (∇κg)µν ,

where we have used that V κ∇κX = V κ∇κY = 0. Since this is true for any curves and
vectors, this means

(∇κg)µν = 0 .

If this condition is satisfied, the connection ∇ is said to be metric compatible.
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(d) Show that for a metric compatible connection ∇ with components Γλµν the equation

∂λgµν − Γκλµgκν − Γκλνgκµ = 0

holds. Show that this implies

Γκ(µν) = Γ̃κµν +
1

2

(
Tν

κ
µ + Tµ

κ
ν

)
,

where Γκ(µν) = 1
2

(Γκµν + Γκνµ), T κλµ = 2Γκ[λµ] = Γκλµ − Γκµλ and

Γ̃κµν =
1

2
gκλ (∂µgνλ + ∂νgµλ − ∂λgµν)

are the Christoffel symbols.
Hint: Take a suitable linear combination of copies of the equation (∇λg)µν = 0 with
cyclic permutations of (λ, µ, ν). (3 points)

This implies, that the connection coefficients Γ are given by

Γκµν = Γ̃κλµ +Kκ
µν ,

where

Kκ
µν ≡

1

2

(
T κµν + Tµ

κ
ν + Tν

κ
µ

)
is called the contorsion, whereas T κµν is called the torsion tensor. This implies, that
if the torsion tensor vanishes on a manifold M , the components of the metric connection
∇ are given by the Christoffel symbols. The connection is then called the Levi-Civita
connection.

H 8.2 Geodesic equation (8 points)
In the lecture we have seen that a curve is a geodesic iff there is a parameterisation such
that it parallel transports its own tangent vector. In the case in which the conection on
the manifold is given by the Levi-Civita connection, given two points, a geodesic is also
that curve c connecting the points, that extremizes the length functional

L(c) =

∫
c

ds =

∫ λ1

λ0

√
−gµν

dxµ

dλ

dxν

dλ
dλ ,

where λ is the parameter of the curve. (Note that for simplicity we assume that Imc ⊂M
is covered by a single chart.)

(a) By varying the above functional, derive the geodesic equation

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
=

1

e

de

dλ

dxµ

dλ
,

where e =
√
−gµν dxµ

dλ
dxν

dλ
. (2 points)
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(b) Show that if you parameterise the curve by its proper time τ the geodesic equation is
simplified to

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 .

(1 point)

Now, as an example, let us consider geodesics of S2 with metric ds2 = dθ2 + sin2 θ dϕ2.

(c) Show, that the geodesic equations take the following form

d2θ

ds2
− sin θ cos θ

(
dϕ

ds

)2

= 0 ,

d2ϕ

ds2
+ 2 cot θ

dθ

ds

dϕ

ds
= 0 ,

where s is the arc length. (1 point)

(d) Let θ = θ(ϕ) be the equation of the geodesic. Show that the above equations can be
written in one equation as follows

d2θ

dϕ2
− 2 cot θ

(
dθ

dϕ

)2

− sin θ cos θ = 0 .

(1.5 points)

(e) Define f(θ) = cot θ and show that f fulfills the following differential equation

d2f

dϕ2
+ f = 0 .

What is the general solution? What do the geodesics of S2 look like? (2.5 points)

H 8.3 Geometrical meaning of the torsion tensor (4 points)
Let X = εµ∂µ and Y = δµ∂µ be two infinitesimal vectors in Tp(M). These vectors are
regarded as small displacements and thus define two points q and s near p, whose coordi-
nates are xµ + εµ and xµ + δµ respectively. Parallel transporting X along the line ps we
obtain a vector pointing from s to some new point r1 and similarly, by parallel transport
of Y along the line pq gives a vector pointing from q to some new point r2. (Note: In this
exercise we consider a general connection ∇ with components Γκµν .)

(a) Show that the vectors sr1 and qr2 are given by

εµ − Γµαβδ
αεβ and δµ − Γµβαδ

αεβ ,

respectively. (2 points)

(b) Now argue that the torsion tensor measures the failure of closure of the parallelogram
made up of the small displacement vectors and their parallel transports. (2 points)
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