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–Home Exercises–

Let M be a (pseudo-)Riemannian manifold with metric g and two charts (U, φ), (V, ψ)
which fulfill U ∩V 6= ∅. Denote the coordinates with respect to the two charts by x = φ(p)
and y = ψ(p), where p is any point in U or V respectively. Denote the space of vector
fields on M by X(M).

H 9.1 Symmetries and Killing vector fields (20 points)
General relativity is supposed to be invariant under general coordinate redefinitions. This
fact is often called diffeomorphism invariance. This exercise studies diffeomorphisms that
leave the metric unchanged, so-called isometries: A diffeomorphism f : M → M is an
isometriy if it preserves the metric, i.e.

f ∗gf(p) = gp ,

or in components

∂yα

∂xµ
∂yβ

∂xν
gαβ(f(p)) = gµν(p) ,

where x and y are the coordinates of p and f(p) respectively. Isometries naturally form a
group which we are going to study from an infinitesimal point of view.

(a) A vector field X = Xµ∂µ on M is said to be a Killing vector field if the small
displacement f : xµ 7→ xµ + εXµ generates an isometry (small means ε2 ≈ 0). Show
that this is the case, if

Xκ∂κgµν + ∂µX
κgκν + ∂νX

κgµκ = 0 .

These are the so-called Killing equations. (1 point)

(b) Show that the Killing equations can be written as

LXgµν = ∇µXν +∇νXµ = 0 .

(1 point)

(c) Work out the Killing vector fields of the Minkowski spacetime (R3,1, η) by solving the
Killing equations. (3 points)
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(d) Show that an n-dimensional Minkowski space (n ≥ 2) is equipped with n(n + 1)/2
Killing vector fields. Spaces which admit this number of Killing vector fields are called
maximally symmetric spaces. (1 point)

(e) Verify that if the metric is independent of some coordiante xσ the corresponding vector
∂σ is a Killing vector. (2 points)

(f) Let Xµ and Y ν be two Killing vector fields. Show that any linear combination of
those two vectors is a Killing vector field and that the Lie-bracket [X, Y ] is a Killing
vector field as well. Conclude that the set of Killing vector fields forms a Lie algebra.

(3 points)

Now, as an example we consider the two-sphere S2 with its usual induced metric.

(g) Write down the three Killing equations for the vector field X = Xθ∂θ+Xϕ∂ϕ. (1 point)

(h) Show that Xθ is independent of θ. We may write Xθ(θ, ϕ) = f(ϕ). By substituting
this into one of the Killing equations work out that Xϕ satisfies

Xϕ = −F (ϕ) sin θ cos θ + g(θ) ,

where F (ϕ) is the primitive of f(ϕ) and g(θ) is some integration constant. (1 point)

(i) By plugging the result of the previous task into the last remaining Killing equation
show that by separation of variables one obtains

dg

dθ
− 2g(θ) cot θ = C , (1)

df

dϕ
+ F (ϕ) = −C , (2)

for some constant C. (2 points)

(j) By integrating (1) find g(θ). By differentiating (2) show that f is harmonic and write
down the general solution. You should end up with

g(θ) = (C1 − C cot θ) sin2 θ , (3)

f(ϕ) = A sinϕ+B cosϕ . (4)

(2 points)

(k) Putting all results together show that a general Killing vector on S2 is given by

X = A (sinϕ∂θ + cosϕ cot θ ∂ϕ) +B (cosϕ∂θ − sinϕ cot θ ∂ϕ) + C1 ∂ϕ . (5)

(1 point)

(l) Identify the three basis vectors of the Killing vector (5) with the angular momentum
Li =

∑
j,k εijkxj∂k. Argue that the Killing vectors on S2 generate the Lie algebra so(3).

Is S2 a maximally symmetric space? (2 points)
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H 9.2 Non-coordinate basis and vielbeins (5 points)
In the coordinate basis Tp(M) is spanned by {∂µ} and T ∗p (M) by {dxµ}. If M is endowed
with a metric gµν there exists an alternative choice. Consider a GL(n,R)-rotation of the
basis vectors ∂µ, i.e.

êα = eα
µ∂µ , (eα

µ) ∈ GL(n,R) ,

such that det(eα
µ) > 0 in order to preserve the orientation of the manifold. In addition we

require {êα} to be orthonormal with respect to gµν , i.e.

g(êα, êβ) = eα
µeβ

νgµν = ηαβ .

If the manifold is strictly Riemannian ηαβ should be replaced by δαβ. Denote the inverse
of eα

µ by eαµ.

(a) Show that the components of a vector V in the new basis êα are related to the old
components V µ by V α = eαµV

µ. (1 point)

(b) Introduce the dual basis {θ̂α} to {êα} by
〈
θ̂α, êβ

〉
= δαβ . Conclude that θ̂α = eαµ dxµ.

(2 points)

{êα} and {θ̂α} are called the non-coordiante basis and eαµ are called the vielbeins.

(c) Show that the metric is given by ds2 = ηαβ θ̂
α ⊗ θ̂β. (1 point)

(d) Consider the standard induced metric on S2 as in H 9.1. Calculate the non-coordinate
basis θ̂α as well as the zweibeins eαµ. (1 point)

The non-coordinate basis is of great interest in general relativity, because it allows for the
definition of spinors on curved spacetimes1.

H 9.3 Curvature and Riemann tensor (15 points)
As we have seen in H 8.1, the connection components Γµαβ do not transform tensorially under
coordinate redefinitions. Hence once cannot expect that they have an intrinsic geometrical
meaning as a measure of how much a manifold is curved. For example, on a flat space Γµαβ
vanish for Cartesian coordinates but fail to do so in polar coordinates. Intrinsic objects
that measure the curvature are the torsion tensor and the Riemann tensor. We already
discussed the former one in H 8.3, so this exercise is dedicated to the Riemann tensor

Rµ
αβγ = ∂βΓµαγ − ∂γΓµαβ + ΓδαγΓ

µ
δβ − ΓδαβΓµδγ .

Note that the Riemann tensor is defined without reference to any metric and therefore the
above formula holds for every connection with components Γµαβ.

(a) Consider an infinitesimal parallelogram pqrs whose coordinates are xµ, xµ + εµ,
xµ + εµ + δµ and xµ + δµ, respectively (here we assume that p,q,r,s are all covered
by the same chart (U, φ)). Take a vector V0 ∈ Tp(M), parallel transport it along

1The curved spacetime counterparts to the γ-matrices in flat spacetime are defined as γµ = eα
µγα and

fulfill {γµ, γν} = 2gµν .
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the curve C = pqr and call the resulting vector VC(r) ∈ Tr(M). Similarly, parallel
transport of V0 along C ′ = psr yields another vector VC′(r) ∈ Tr(M). Show that the
difference is given by

V µ
C′(r)− V µ

C (r) = V κ
0 R

µ
κλνε

λδν .

(4 points)

We have seen in the lecture, that it is always possible to locally find coordinates on M such
that at the point p, ∂ρgµν |p = 0. Hence the connection components vanish at that point.
These coordinates are called locally inertial coordinates. Note that the second derivatives
of the metric do not vanish in this coordinate system!2 We will, in the following use this
coordinate system to simplify some calculations. This is possible, because if one finds
a purely tensorial equation, then (because of its transformation behaviour under general
coordinate transformations) it is true in every coordinate system.

(b) Consider the Riemann tensor with all indices lowered, Rµαβγ = GµκR
κ
αβγ. Use locally

inertial coordinates to deduce the symmetry properties of the curvature tensor, i.e.

Rκλµν = −Rκλνµ ,

Rκλµν = −Rλκµν ,

Rκλµν = Rµνκλ .

(2 points)

(c) Show that the sum of cyclic permutations of the last three indices of the curvature
tensor vanishes, i.e.

Rκλµν +Rκµνλ +Rκνλµ = 0 , 1st Bianchi identity . (6)

(1 point)

(d) Use the results in (b) to show that (6) is equivalent to the vanishing of the antisym-
metric part of the last three indices of the Riemann tensor,

Rκ[µνλ] = 0 .

(1 point)

(e) Given these relationships between the different components of the Riemann tensor, how
many independent quantities remain? Deduce the number of independent components
of the Riemann tensor in n dimensions. (2 points)

(f) Make use of locally inertial coordinates once more to prove

∇[µRκλ]ρσ = 0 , 2nd Bianchi identity . (7)

(3 points)

2The metric at a point q near p can then be expanded as gµν(q) = ηµν + 1
3Rµλνρq

λqρ + . . . . Note that
in this coordinate system p has coordinates x = (0, . . . , 0).
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(g) By contracting indices of the second Bianchi identity (7) twice, show that

∇µRµν =
1

2
∇νR .

(2 points)
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