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H 2.1 Reduction to moduli of the string partition function (16,5 points)
The string partition function for a worldsheet with the topology of a compact Riemann
surface with genus h is given by

Z = N
∫
DgabDXµexp

(
−
∫

d2σ
√
g(

1

2
gab∂aX

µ∂bXµ +
1

4π
λR
)
, (1)

with N some normalisation, σ1, σ2 coordinates on the worldsheet, Xµ(σ1, σ2) the mapping
from the worldsheet to the target space, λ the string coupling, R the Ricci scalar of the
worldsheet, g = det gab and gab a metric on the wordsheet.

(a) Show that the partition function in (1) is equivalent to (0,5 points)

Z = N eλ(2−2h)

∫
DgabDXµexp

(
−
∫

d2σ
√
g(

1

2
gab∂aX

µ∂bXµ

)
. (2)

The integral in (1) is highly divergent because one integrates infinitely many times over
conformaly equivalent surfaces. We need to extract the divergent part and only integrate
over physically inequivalent metrics. Let Gh denote the space of admissible metrics on a
compact Riemann surface with genus h. Then

〈δg(1)
ab , δg

(2)
ab 〉 =

∫
d2σ
√
ggacgbdδg

(1)
ab δg

(2)
cd . (3)

defines a scalar 〈·, ·〉 product of two infinitesimal variations δg
(1)
ab and δg

(2)
ab of the metric

gab. More precise δg
(1)
ab and δg

(2)
ab are elements of the tangent space Tg (Gh) at the the point

gab ∈ Gh.

(b) Recall that Weyl transformations and diffeomorphisms of the metric do not change the
physical results and are therefore symmetries of the worldsheet. Show that under the
combined action of

• a Weyl scaling gab → eφgab

• and diffeomorphism generated by a vector field ~v
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the infinitesimal variation of gab is given by

δgab = δφgab +∇avb +∇bva. (4)

Split δgab into a trace part δgW
ab and a symmetric traceless part δgD

ab and show that the
the norm of δgab is given by

||δg||2 = ||δgW||2 + ||δgD||2. (5)

How do δgW
ab and δgD

ab look like explicitly? (3 points)
Hint: Define an operator P which maps vectors ~u ∈ Tg (Gh) to second-rank symmetric
traceless tensors ua → (P~u)ab.

(c) Conformal killing vectors (CKV) ~vCKV fulfill the condition

∇avb +∇bva = λgab, with λ ∈ R. (6)

Show that CKV are elementsKer(P ) of and can be replaced by Weyl scalings. (1 point)

We are interested in the subspace Mh ⊂ Gh, containing all conformal equivalence classes
of metrics, called the moduli space. Denoting the set of Weyl scalings as Weyl and the set
of diffeomorphisms as Diff , the moduli space is represented as

Mh ∼
Gh

Weyl ×Diff
. (7)

In general the infinitesimal variation of a metric g(ti) ∈ Gh is given by

δgab = δgW
ab + δgD

ab + δti
∂

∂ti
gab, (8)

where ti are the moduli parameter.

(d) Split the term δti
∂
∂ti
gab into a trace and traceless symmetric part and define an operator

T iab which acts on δti and maps it to the traceless symmetric term of δti
∂
∂ti
gab. (2 points)

In order to integrate in (1) only over physically inequivalent metrics we need to find an
appropriate gauge slice in Gh. Therefore we first need to find a slice G̃h which contains all
equivalence classes of metrics related by Weyl transformations. Then the gauge slice lies in
G̃h and is chosen in such a way that a transformation exp(P~v) on a point g̃ab ∈ {gauge slice}
leads to a point ĝab still in G̃h but no longer in the gauge slice.

(e) Consider a point g̃ab ∈ G̃h. Is it possible to act on g̃ab with an element ∈ Diff in such
a way, that on leaves the slice G̃h? Explain why! (1 point)

(f) Let us denote an infinitesimal variation changing the conformal equivalence class by
δg⊥ab. It is therefore a tangent vector in the tangent space of Mh. Why must δg⊥ab be
traceless? Show that δg⊥ab ∈ Ker(P †). Hint: How is the angle between the tangent
vectors (P~v)ab and δg⊥ab? (1,5 points)
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(g) Let ψαab, α = 1, ..., dimKer(P †) be an orthonormal basis for Ker(P †) and decompose
T iabδti into a linear combination of basis vectors of Ker(P †) and vectors of Range(P ).
You should arrive at

T iabδti = 〈ψα, T i〉ψαabδti +
〈P~v, T i〉
||P~v||2

(P~v)abδti. (9)

Show that the norm of δgab is given by

||δg||2 = ||δφ̃||2 + ||P ṽ||2 + 〈ψα, T i〉〈ψα, T j〉δtiδtj, (10)

with

δφ̃ = δφ+∇cv
c +

1

2

(
gcdδti

∂

∂ti
gcd

)
and ṽ =

(
1 +
〈P~v, T iδti〉
P~v, P~v

)
~v. (11)

(2 points)

In order to change the path integral variables from gab to φ, ~v and ti we use the relation

1 =

∫
Dgabexp(−||δg||2/2) (12)

= J

∫
DφDv′adt1...dtnexp

(
−[||δφ̃||2 + ||P ṽ′||2 + 〈ψα, T i〉〈ψα, T j〉δtiδtj]/2

)
to calculate the Jacobian J . Notice that ~v′ denotes elements from Range(P ). Since
elements from Ker(P ) are orthogonal to ~v′ we can decompose the volume of the diffeo-
morphism group VDiff into V ⊥Diff × V CKV

Diff . Let χi, i = 1, ..., dimKer(P ) be a basis for
Ker(P ), then one can show that

V ⊥Diff = VDiff (det〈χi, χj〉)−1/2 . (13)

From (12) one can show that the Jacobian for the path integral should be given by J =

det1/2(P †P )det〈ψi,T j〉
det〈ψi,ψj〉 .

(h) Show that ∫
Dgab → VDiff

∫
Dφdt1...dtn

(
det(P †P )

det〈χi, χj〉

)1/2
det〈ψi, T j〉
det〈ψi, ψj〉

(14)

(0,5 points)

(i) Express the number of real moduli n by the genus h for a compact Riemann surface
with no crosscaps and h ≥ 2. Hint: There are no CKV for compact Riemann surfaces
with h ≥ 2. (1 point)

In the critical dimension (D = 26 for the bosonic string) the integrand becomes independent
from φ and the integral

∫
Dφ = VConf can be absorbed into the normalization. It can be

shown that the integral over the mappings Xµ is given by∫
DXµexp

(
−
∫

d2σ
√
g(

1

2
gab∂aX

µ∂bXµ

)
= V

(∫
d2σ
√
g

2π

)13

(det∆g)
−13 , (15)
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with V the volume of space time and ∆g = − 1√
g
∂a
√
ggab∂b. Putting the previous results

together we find that the partition function in (1) can be expressed by

Z = Veλ(2−2h)

∫
Mh

dt1...dtn
(

det(P †P )

det〈χi, χj〉

)1/2
det〈ψi, T j〉

det1/2〈ψi, ψj〉

(
2π∫

d2σ
√
g

det∆g

)−13

(16)

(h) Now that we have the general expression for the partition function of a compact Rie-
mann surface let us apply the results to the h = 1 case. The worldsheet hast the
topology of a torus and Z is the torus partition function.

(i) Show that χ1 = (1, 0)T and χ2 = (0, 1)T are a possible choice for Ker(P ).
(0,5 points)

(ii) Argue that n = 2 and show that T iab are given by

T 1
ab =

(
−τ1 1− τ1

1− τ1 τ1

)
and T 2

ab =

(
−τ2 −τ2

−τ2 τ2

)
, (17)

where τ1 and τ2 are the moduli of the torus with the gab = |dσ1 + (τ1 + iτ2)dσ2|2.
Why do T 1

ab, T
2
ab form a possible basis for Ker(P †). Hint: Since the metric is flat

(P †T i)b = −2∂aT iab. (1,5 points)

(iii) Next calculate det〈χi, χj〉 and det〈ψi,T j〉
det1/2〈ψi,ψj〉 and show that det(P †P ) = (det(2∆g))

2.

Hint: First show (P †P )abv
b = 2δab∆gv

b (1 point)

(iv) Use det(2∆g) = 1
2

det(2) det(∆g) and compute Z. You should arrive at

Z = V
∫
M1

d2τ
τ 10

2

(2π)13
(det(∆g))

−12 det(2). (18)

(1 point)

det(2) can be absorbed into a counterterm by modifying the action. The computation
of det(∆g) would lead to

det ∆g = τ 2
2 e−πτ2/3

∣∣∣ ∞∏
n=1

1− e2iπnτ
∣∣∣4. (19)

plugging it into Z we arrive at the final result for the torus partition function

Z =

∫
M1

d2τ

2πτ 2
2

(2πτ2)−12e4πτ2
∣∣∣ ∞∏
n=1

1− e2iπnτ
∣∣∣−48

(20)

=
1

2

∫
FPSL(2,Z)

d2τ

2πτ 2
2

(2πτ2)−12e4πτ2
∣∣∣ ∞∏
n=1

1− e2iπnτ
∣∣∣−48

,

where FPSL(2,Z) is the fundamental domain of the modular group PSL(2,Z). Notice
that integrating over FPSL(2,Z) leaves an unfixed residual gauge freedom given by the
diffeomorphism σ1 → −σ1, σ2 → −σ2. Therefore a factor of 1/2 is necessary to remove
the over-counting.
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H 2.2 Physical interpretation of the torus partition function (3,5 points)
The effective action for a massive free scalar field φ is defined by

eΓ =

∫
Dφe−S[φ], with S[φ] =

1

2

∫
ddxφ(−�+m2)φ. (21)

The exponent Γ is proportional to the vacuum energy Evac

Γ = VEvac, (22)

where V is the volume of spacetime.

(a) Compute eΓ. Hint: Result is eΓ = (det(−�+m2))
−1/2

(2 points)

(b) Show that

Evac = −1

2

∫
ddk

(2π)d
log(k2 +m2), (23)

where kµ is the momentum in the µ-th direction. Hint: Use 1 =
∫

ddk|k〉〈k|. (1 point)

(c) In string theory a string has many excitations generating many massive fields. There-
fore the vacuum energy for a bosonic string must be the sum over all excitations

Evac = −1

2

∑
i

∫
ddk

(2π)d
log(k2 +m2

i ). (24)

Use the properties logA = − limε→0
d
dε
A−ε = − limε→0

d
dε

[
ε
∫

dt
t1−ε

e−2πtA
]

to show that

the vacuum energy can be writen as a trace over the Hilbert space H

Evac ∝
∫

dt

t
TrH [ e ... ]. (25)

(0,5 points)
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