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–Homeworks–

11.1 Reduction to moduli of the string partition function

The string partition function for a worldsheet with the topology of a compact Riemann surface
with genus g is given by

Z = N
∫
DhabDXµexp

[
−
∫

d2σ
√
h

(
1

2
hab∂aX

µ∂bXµ +
1

4π
λR
)]

, (1)

with N some normalization, (σ1, σ2) are coordinates on the worldsheet, Xµ(σ1, σ2) the map-
ping from the worldsheet to the target space, λ the string coupling, R the Ricci scalar of the
worldsheet, h = dethab and hab a metric on the wordsheet.

a) Show that the partition function in (1) is equivalent to (0,5 Points)

Zg = N eλ(2g−2)

∫
DhabDXµexp

(
−
∫

d2σ
√
h

1

2
hab∂aX

µ∂bXµ

)
. (2)

The integral in (2) is highly divergent because one integrates infinitely many times over con-
formally equivalent surfaces. We need to extract the divergent part and only integrate over
physically inequivalent metrics. Let Gg denote the space of admissible metrics on a compact
Riemann surface with genus g. Then

〈δh(1)
ab , δh

(2)
cd 〉 =

∫
d2σ
√
hhachbdδh

(1)
ab δh

(2)
cd

defines a scalar 〈·, ·〉 product of two infinitesimal variations δh
(1)
ab and δh

(2)
ab of the metric hab.

More precise, δh
(1)
ab and δh

(2)
ab are elements of the tangent space Th (Gg) at the the point hab ∈ Gg.

b) Recall that Weyl transformations and diffeomorphisms of the metric do not change the
physical results and are therefore symmetries of the worldsheet. Show that under the
combined action of

• a Weyl scaling hab 7→ eφhab

• and a diffeomorphism generated by a vector field ~v
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the infinitesimal variation of hab is given by

δhab = δφhab +∇avb +∇bva .

Split δhab into a trace part δhW
ab and a symmetric traceless part δhD

ab and show that the
the norm of δhab is given by

||δh||2 = ||δhW||2 + ||δhD||2 .

Write down the explicit form of δhW
ab and δhD

ab.

Hint : Define an operator P which maps vectors ~v to second-rank symmetric traceless
tensors va → (P~v)ab. (3 Points)

c) Conformal killing vectors (CKV) ~vCKV fulfill the condition

∇avb +∇bva = λhab with λ ∈ R .

Show that CKV are elements of ker(P ) and can be replaced by Weyl scalings. (1 Point)

We are interested in the subspace Mg ⊂ Gg, containing all conformal equivalence classes of
metrics, called the moduli space. Denoting the set of Weyl scalings as Weyl and the set of
diffeomorphisms as Diff , the moduli space is represented as1

Mh ∼
Gg

Weyl ×Diff
.

In general an infinitesimal variation of a metric h(ti) ∈ Gg is given by

δhab = δhW
ab + δhD

ab + δti
∂

∂ti
hab ,

where ti are the moduli parameter.

d) Split the term δti
∂
∂ti
hab into a trace and a traceless symmetric part and define an operator

T iab which acts on δti and maps it to the traceless symmetric term of δti
∂
∂ti
hab. (2 Points)

In order to integrate in (2) only over physically inequivalent metrics we need to find an appro-
priate gauge slice in Gg. Therefore, we first need to find a slice G̃g which contains all equivalence
classes of metrics related by Weyl transformations. Then the wanted gauge slice lies in G̃g and
is chosen in such a way that a transformation exp(P~v) on a point g̃ab ∈ {gauge slice} leads to
a point ĥab still in G̃g but no longer in the wanted gauge slice.

e) Consider a point h̃ab ∈ G̃g. Argue whether it is possible to act on h̃ab with diffeomorphism
in such a way, that it leaves the slice G̃g. (1 Point)

f) Let us denote an infinitesimal variation changing the conformal equivalence class by δh⊥ab.
It is therefore a tangent vector in the tangent space of Mg. Argue why δh⊥ab must be
traceless. Show that δh⊥ab ∈ ker(P †).

Hint : Compute the angle between the tangent vector (P~v)ab and δh⊥ab. (1,5 Points)

1Actually, it is the semidirect product of Weyl and Diff .

— 2 / 5 —



g) Let ψαab, α = 1, ...,dim(ker(P †)) be an orthonormal basis for ker(P †). Decompose T iabδti
into a linear combination of basis vectors of ker(P †) and vectors of range(P ). This yields

T iabδti = 〈ψα, T i〉ψαabδti +
〈P~v, T i〉
||P~v||2

(P~v)abδti .

Show that the norm of δhab is given by

||δh||2 = ||δφ̃||2 + ||P~̃v||2 + 〈ψα, T i〉〈ψα, T j〉δtiδtj ,

with

δφ̃ = δφ+∇cvc +
1

2

(
hcdδti

∂

∂ti
hcd

)
and ~̃v =

(
1 +
〈P~v, T iδti〉
||P~v||2

)
~v .

(2 Points)

In order to change the path integral variables from hab to φ, ~v and ti we use the relation

1 =

∫
Dhab exp(−||δh||2/2)

= J

∫
Dφ̃Dv′adt1 · · · dtnexp

(
−
[
||δφ̃||2 + ||P ṽ′||2 + 〈ψα, T i〉〈ψα, T j〉δtiδtj

]
/2
) (3)

to calculate the Jacobian J . Notice that ~v′ denotes elements from range(P ). Since elements
from ker(P ) are orthogonal to ~v′ we can decompose the volume of the diffeomorphism group
VDiff into V ⊥Diff × V CKV

Diff . Let χi, i = 1, ...,dim(ker(P )) be a basis for ker(P ), then one can
show that

V ⊥Diff = VDiff
(
det〈χi, χj〉

)−1/2
.

From (3) one can show that the Jacobian for the path integral should be given by J =

det1/2(P †P ) det〈ψi,T j〉
(det〈ψi,ψj〉)

1
2

.

h) Show that ∫
Dhab → VDiff

∫
Dφdt1 · · · dtn

(
det(P †P )

det〈χi, χj〉

)1/2
det〈ψi, T j〉

(det〈ψi, ψj〉)
1
2

.

(0,5 Points)

i) Express the number of real moduli n by the genus g for a compact Riemann surface with
no crosscaps and g ≥ 2.

Hint : There are no CKV for compact Riemann surfaces with g ≥ 2. (1 Point)

In the critical dimension (D = 26 for the bosonic string) the integrand becomes independent
from φ and the integral

∫
Dφ = VConf can be absorbed into the normalization. It can be shown

that the integral over the mappings Xµ is given by∫
DXµexp

(
−
∫

d2σ
√
h

1

2
hab∂aX

µ∂bXµ

)
= V

(∫
d2σ
√
h

2π

)13

(det∆h)−13 ,

with V the volume of space time and ∆h = − 1√
h
∂a
√
hhab∂b. Putting the previous results

together we find that the partition function in (1) can be expressed by

Zg = Veλ(2g−2)

∫
Mg

dt1...dtn
(

det(P †P )

det〈χi, χj〉

)1/2
det〈ψi, T j〉

det1/2〈ψi, ψj〉

(
2π∫

d2σ
√
h

det∆h

)−13

.
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j) Now we have the general expression for the partition function of a compact Riemann
surface. We want to analyze more carefully the torus partition function Z1 meaning that
the worldsheet has the topology of a torus.

(i) Show that χ1 = (1, 0)T and χ2 = (0, 1)T are a possible choice for ker(P ). (0,5 Points)

(ii) Show that T iab are given by

T 1
ab =

(
0 1
1 2τ1

)
and T 2

ab =
1

τ2

(
−1 −τ1

−τ1 τ2
2 − τ2

1

)
,

where τ1 and τ2 are the moduli of the torus with the hab = |dσ1 + (τ1 + iτ2)dσ2|2.
Explain why T 1

ab, T
2
ab form a possible basis for ker(P †).

Hint : Since the metric is flat we have (P †T i)b = −2∂aT iab. (1,5 Points)

(iii) Next calculate det〈χi, χj〉 and det〈ψi,T j〉
det1/2〈ψi,ψj〉

and show that det(P †P ) = (det(2∆h))2.

Hint : First show (P †P )abv
b = 2δab∆hv

b. (1 Point)

(iv) Use det(2∆h) = 1
2 det(2) det(∆h) and compute Z1. You should arrive at

Z1 = V
∫
M1

d2τ
τ10

2

(2π)13
(det(∆h))−12 det(2) .

(1 Point)

The term det(2) can be absorbed into a counterterm by modifying the action. The com-
putation of det(∆h) would lead to

det ∆h = τ2
2 e−πτ2/3

∣∣∣ ∞∏
n=1

1− e2iπnτ
∣∣∣4 .

Plugging it into Z1 we arrive at the final result for the torus partition function

Z1 =

∫
M1

d2τ

2πτ2
2

(2πτ2)−12e4πτ2
∣∣∣ ∞∏
n=1

1− e2iπnτ
∣∣∣−48

=
1

2

∫
FPSL(2,Z)

d2τ

2πτ2
2

(2πτ2)−12e4πτ2
∣∣∣ ∞∏
n=1

1− e2iπnτ
∣∣∣−48

,

where FPSL(2,Z) is the fundamental domain of the modular group PSL(2,Z). Notice that
integrating over FPSL(2,Z) leaves an unfixed residual gauge freedom given by the diffeo-

morphism σ1 → −σ1, σ2 → −σ2. Therefore a factor of 1
2 is necessary to remove the

overcounting.
From exercise 9.2 it follows that the torus partition function is invariant under modular
transformations.

11.2 Physical interpretation of the torus partition function

The effective action for a massive free scalar field φ is defined by

e−Γ =

∫
Dφe−S[φ] with S[φ] =

1

2

∫
ddxφ(−�+m2)φ .

— 4 / 5 —



The exponent Γ is proportional to the vacuum energy Evac

Γ = VEvac ,

where V is the volume of spacetime.

a) Compute e−Γ.

Hint : The result is eΓ =
(
det(−�+m2)

)−1/2
. (2 Points)

b) Show that

Evac = −1

2

∫
ddk

(2π)d
log(k2 +m2) ,

where kµ is the momentum in the µ-th direction.

Hint : Use 1 =
∫

ddk|k〉〈k|. (1 Point)

c) In string theory a string has many excitations generating many massive fields. Therefore,
the vacuum energy for a bosonic string must be the sum over all excitations

Evac = −1

2

∑
i

∫
ddk

(2π)d
log(k2 +m2

i ) .

Use the properties logA = − limε→0
d
dεA

−ε = − limε→0
d
dε

[
ε
∫

dt
t1−ε e

−2πtA
]

to show that

the vacuum energy can be writen as a trace over the Hilbert space H

Evac ∝
∫

dt

t
TrH [ e ... ] .

(0,5 Points)
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