Superstring Theory

Priv.-Doz. Dr. Stefan Förste und Christoph Nega http://www.th.physik.uni-bonn.de/people/forste/exercises/strings19 Due date: 13.12.2019

-Homeworks-

9.1 State degeneracy

Consider light-cone gauge quantization of open bosonic string theory with NN boundary conditions.

a) Show that states $|\phi\rangle$ corresponding to $\hat{N} |\phi\rangle = N |\phi\rangle$, where $\hat{N} = \sum_{i=1}^{24} \sum_{n=1}^{\infty} \hat{\alpha}_{-n}^{i} \hat{\alpha}_{n}^{i}$ is the number operator and $N = \sum_{l=1}^{k} n_{l}$, have the form

$$|\phi\rangle = \hat{\alpha}_{-n_1}^{i_1} \cdots \hat{\alpha}_{-n_k}^{i_k} |0, p^{\mu}\rangle ,$$

where $|0, p^{\mu}\rangle$ is the ground state with momentum p^{μ} .

b) Consider the one-dimensional case, for example i = 1 in \hat{N} of item a) without loss of generality. Show that the number of states, i.e. partitions or degeneracy, at a N-th level of a single family of oscillators is given by the coefficient of q^N in

$$\sum_{N=0}^{\infty} P(N)q^N = \prod_{i=1}^{\infty} (1-q^n)^{-1} .$$
 (1)

(2 Points)

(1 Point)

Expression (1) will appear several times when discussing partition functions in string perturbation theory. Moreover, it is related with the Dedekind η -function, defined by

$$\eta(\tau) = q^{1/24} \prod_{i=1}^{\infty} (1-q^n) \text{ with } q = e^{2\pi i \tau} ,$$

where τ is the modulus of a torus T^2 .

9.2 $SL(2,\mathbb{Z})$ transformations and the moduli space of a torus

In string perturbation theory the relevant Riemann surface for computing the one-loop partition function of the closed string is given by a two-dimensional torus T^2 (this is a vacuum diagram since there are no external strings). Let us therefore study how to identify two conformally inequivalent tori.

 T^2 is defined by modding out the complex z-plane \mathbb{C} by a two-dimensional lattice $\Lambda = \{n + 1\}$

-1/3-

 $m\tau|n, m \in \mathbb{Z}$ } with generating lattice vectors 1 and τ such that $z \sim z + n + m\tau$, i.e. $T^2 = \mathbb{C}/\Lambda$. $\tau \in \mathbb{C}$ is the torus *modulus* or *Teichmüller parameter* describing points in the *Teichmüller space* (for a torus T^2 it is the upper-half plane $\mathbb{H}_+ = \{\tau \in \mathbb{C} | \operatorname{Im}(\tau) > 0\}$).

The torus modulus τ changes under global diffeomorphisms called *modular transformations* $PSL(2,\mathbb{Z}) = SL(2,\mathbb{Z})/\mathbb{Z}_2$ but the torus is left invariant. Therefore, the *moduli space* of the torus (:= the space of conformally inequivalent tori) is given by

$$\mathcal{M}_{T^2} = \frac{\text{Teichmüller space}}{\text{Modular group}}$$

The group $SL(2,\mathbb{Z})$ is represented by 2×2 matrices with unit determinant and integer elements

$$\operatorname{SL}(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z} \text{ and } ad - bc = 1 \right\}.$$

It acts on $z \in \mathbb{C}$ by Möbius transformations $z \mapsto z' = \frac{az+b}{cz+d}$. The generators of the group $SL(2,\mathbb{Z})$ are given by

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- a) Describe the action of T and S on the upper-half plane \mathbb{H}_+ . Moreover, give their geometrical interpretations. (2 Points)
- b) Argue that it suffice to restrict to $PSL(2, \mathbb{Z})$ instead of $SL(2, \mathbb{Z})$. (1 Point)
- c) Show that a choice for the fundamental domain \mathcal{F} of the torus, i.e. a subset of the upperhalf plane \mathbb{H}_+ such that any point in \mathbb{H}_+ is related to a point in \mathcal{F} by the action of $\mathrm{PSL}(2,\mathbb{Z})$, is given by

$$\mathcal{F} = \left\{ z \in \mathbb{H}_+ | \ -\frac{1}{2} \le \operatorname{Re}(\tau) \le 0 \ , \ |\tau| \ge 1 \right\} \cup \left\{ z \in \mathbb{H}_+ | \ 0 < \operatorname{Re}(\tau) < \frac{1}{2} \ , \ |\tau| > 1 \right\} \ .$$

<u>*Hint*</u>: Start with τ possibly outside of the fundamental domain \mathcal{F} and act k times with T to get $\operatorname{Re}(\tau)$ in a strip of width 1. Then use S conveniently. (3 Points)

- d) Calculate how $d^2\tau$ and $\text{Im}(\tau)$ transform under Möbius transformations of $\text{PSL}(2,\mathbb{Z})$. Find an expression (not the constant function) in $d^2\tau$ and $\text{Im}(\tau)$ which is invariant under $\text{PSL}(2,\mathbb{Z})$ transformations. (3 Points)
- e) Show that the Dedekind η -function defined in exercise 9.1 transforms under T by

$$\eta(\tau+1) = \mathrm{e}^{i\pi/12} \,\eta(\tau)$$

(2 Points)

Bonus exercise:

f) Show that the Dedekind η -function transforms under S by

$$\eta(-1/\tau) = \sqrt{-i\tau} \ \eta(\tau) \ ,$$

-2/3-

which together with part e) gives the transformation behaviour of the Dedekind η -function under the whole modular group $PSL(2,\mathbb{Z})$.

<u>*Hint*</u>: See also Neal Koblitz "Introduction to Ellipitc Curves and Modular Forms". You can use the following property of the second Eisenstein series

$$E_2(-1/\tau) = z^2 E_2(\tau) + \frac{12}{2\pi i} z$$
.

(+4 Extra points)