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–In-class exercises–

A2.1 Saddle-point method
In the context of statistical physics it is often necessary to solve integrals of the form

I = lim
N→∞

∫ b

a

eNf(x)dx.

If f(x) is an analytic function on the interval [a, b] and has a global minimum at x0 ∈ (a, b)
then

I = lim
N→∞

eNf(x0)

√
2π

N |f ′′(x0)|
, where f ′′(x0) ≡

∂2f(x)

∂x2

∣∣∣∣
x=x0

.

Show Stirling’s formula

N !→
√

2πNNNe−N as N →∞

using the saddle-point method.
Hint: Use the integral representation of the gamma function N ! = Γ(N+1) =

∫∞
0
xNe−xdx.

A2.2 Ensemble of quantum mechanical harmonic oszillators
Consider a system of N distinguishable, non-interacting, quantum mechanical, harmonic
oscillators with equal angular velocity ω. States of the complete system are then given by
the individual oscillator states

|n1, n2, . . . , nN〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nN〉 .

We write shorthand

ai ≡ 1
⊗(i−1) ⊗ a⊗ 1

⊗(N−i) = 1⊗ · · · ⊗ 1⊗ a
↑

ite Stelle

⊗ 1⊗ · · · ⊗ 1

for the lowering operator of the ith oscillator (with similar expressions for a†j, Nj, Hj).
The Hamilton operator of the system is given by

H =
N∑
j=1

~ω
(
a†jaj +

1

2

)
.

First, consider the case N = 3 with total energy E = 9
2
~ω of the system.
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(a) How many different states realize this value of the energy?

(b) What is the probability p(ε) for a given oscillator to have the energy ε?

Now we want to determine the number of states for a given energy E in the limit of a very
big number of oscillators N � 1. In general, it is given by

Ω(E) ≡ Sp δ(E −H).

(c) What is Ω(E) for the given system?

(d) Show, that

Ω(E) =

∫
dk

2π
eikE

(
e−ik~ω/2

1− e−ik~ω

)N
and further, that

Ω(E) =

∫
dk

2π
eN(ik(E/N)−log(2i sin(k~ω/2))).

(e) This integral can be computed using the saddle-point method. Show, that Ω(E) is
given by

Ω(E) = exp

{
N

[
E
N

+ 1
2
~ω

~ω
log

E
N

+ 1
2
~ω

~ω
−

E
N
− 1

2
~ω

~ω
log

E
N
− 1

2
~ω

~ω

]}
.

–Homework–

H2.1 Spin precession of a spin-1/2 particle (5+5=10) Points
The Hamilton operator of a spin-1/2 particle in a homogeneous magnetic field B is given
by

H = −γ
2
~

3∑
j=1

σjBj,

where γ is the gyromagnetic constant and σi (i = 1, 2, 3) are the Pauli matrices.
The time variation of the polarisation is given by

∂Pi
∂t

=
∂ 〈σi〉
∂t

.

Here, σi is to be understood as an operator in the spin-1/2 representation of the rotation
group.
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(a) Express the time variation of the polarisation in terms of the density matrix ρ(t) and
show

i
∂Pi
∂t

= −γ
2

∑
j

Bj Sp ([σi, σj]ρ) .

(b) Show the Bloch equation

∂

∂t
P = γ (P ×B) .

Hint: [σi, σj] = 2i
∑

k σkεijk.

H2.2 Spin ensemble (4+2+2+2=10) Points
Consider a system of N (N � 1) non-interacting spin-1/2 particles in a constant magnetic
field B. Each of the particles has a magnetic moment µ, which can be aligned parallelly
or anti-parallelly to the magnetic field. Let n1 (n2) be the number of magnetic moments
aligned parallelly (anti-parralelly) to the magnetic field. The energy of the system is then
given by E = −(n1 − n2)µB.

(a) Show, that the number of states having an energy between E and E + δE is given
approximately by

ω(E, δE) =
N !(

N
2
− E

2µB

)
!
(
N
2

+ E
2µB

)
!

δE

2µB
,

where E � δE � µB.
Hint: What is the energy difference between two energy levels?

(b) Use Stirling’s formula, as it was derived in exercise A 2.1, to find an approximation to
lnω(E, δE).

(c) Interprete the function ln f(n1) ≡ ln
(

N !
n1!(N−n1)!

)
as a continuous function of n1. Its

Taylor expansion around the maximum n1,max up to second order is then given by

ln f(n1) = ln f(n1,max) +
1

2
(n1 − n1,max)

2 ∂
2 ln f(n1)

∂n2
1

∣∣∣∣
n1=n1,max

.

Using the approximation lnn! ≈ n lnn − n, calculate the maximum n1,max as well as
∂2 ln f(n1)

∂n2
1

∣∣∣
n1=n1,max

.

(d) Use the exponential of the Taylor expansion of ln f(n1) to show that ω(E, δE) is given
approximately by the Gaussian distribution

ω(E, δE) = 2N
√

2

πN

δE

2µB
exp

[
− 2

N

(
E

2µB

)2
]
.
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