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–In-Class Exercises–

A 3.1 Derivatives in multidimensional Analysis
In this exercise, we want to remind ourselves of some important notions from (real) mul-
tidimensional analysis. Consider a vector-valued map f(x1, x2, . . . , xn) with l components
fa(x1, x2, . . . , xn), which depends on n real real variables, i.e. a map f : Rn → R

l. The
simplest and most natural generalization of the notion of a derivative in one-dimensional
analysis is the partial derivative,

∂

∂xi
fa(x1, . . . , xn) ≡ lim

h→0

fa(x1, . . . , xi + h, . . . , xn)− fa(x1, . . . , xi, . . . , xn)

h
,

in which one looks at the variation of one of the map’s components in the direction of
a single coordinate, while all other coordinates are kept constant.1 If we now consider a
second map g : Rm → R

n, as well as the concatonation h = f ◦ g : Rm → R
l of f and g,

we can use the chain rule

∂hi

∂xj
(p) =

n∑
k=1

∂f i

∂yk
(g(p))

∂gk

∂xj
(p) , i = 1, . . . , l, j = 1, . . . ,m ,

to determine the partial derivatives of h. Henceforth we will be especially interested in the
case l = 4, i.e. for real-valued functions f(x1, x2, . . . , xn).
In general one is not interested in the variation of a map along just one component, but
in the direction of any given vector. For that purpose one defines the directional derivative
along a unit vector v ∈ Rn,

Dvf(p) ≡ d

dt
f(p+ tv)

∣∣∣∣
t=0

.

(a) Show that Dvf(p) =
∑n

k=1
∂f
∂xk

(p)vk.

Now we want to define the total differential of the function f which plays a central role in
thermodynamics. In order to do that, though, we have to first introduce the notion of a
linear for. Consider a vector space V over the field R. A map f : V → R is called linear
form, if the identities

f(x+ y) = f(x) + f(y), ∀x, y ∈ V und

f(αx) = αf(x), ∀α ∈ R, x ∈ V
1This, of course, only works if this limit exists, which we will always assume. In the context of thermo-

dynamics the functions we consider are, up to certain interesting examples, always smooth.

1



are satisfied. The set of all linear forms over an n-dimensional vector space V is itself an
n-dimensional vector space, called the dual space V ∗. If {xi} (i = 1, . . . , n) is a basis of V ,
the set {dxi}, where

dxi(xj) = δij

is a basis of V ∗. Keep in mind, that the dxi are themselves maps from V to R.

(b) Show, by a proper definition of addition and scalar multiplication, that V ∗ is itself an
R vector space and that {dxi} is a basis of this vector space.

Consider now an open subspace M of Rn and a differentiable function f : M → R. The
total derivative of f is then defined as the map

df(p) :
R
n → R

v 7→ Dvf(p)
,

which maps a vector v, to the directional derivative Dvf(p) of the function f at the point p
in the direction of v. Because of the linearity of the directional derivative, df(p) is a linear
form and we can write

df(p) =
n∑
k=1

∂f

∂xk
(p) dxk .

By definition every total derivative is a linear form. On the other hand, not every linear form
A is a total derivative of a function. If the linear form satisfies the integrability condition
dA = 0 (one then calls A closed), though, one can at least in the neighbourhood of every
point find a function f , such that A = df . If the domain of a linear form is the whole Rn,
or, more generally a star domain, then this integral f of A even exists globally2.
In the context of thermodynamics it often happens, that a system is completely determined
by a certain number of functions of state, though one has a bigger number of functions
of state at hand. Of course in this case the functions of state are not independend from
each other and can be seen as functions of each other. To illustrate that, let us look at a
function f : S2 → R, where S2 denotes the two dimensional unit sphere. We parameterize
the S2 via its canonical embedding into the R3, that means using the euclidean coordinates
(x, y, z) which depend on each other via the relation 1 = x2 + y2 + z2.

(c) Let f(x, y) = x2 + y2. Write down df(x, y). What is df(x, z(x, y))?

In such cases one sometimes explicitly indicate the variables that are kept constant. For
instance one writes

∂

∂x
f(x, y) =

(
∂f(x, y)

∂x

)
y

=

(
∂f

∂x

)
y

.

(d) Calculate
(
∂f
∂x

)
y

as well as
(
∂f
∂x

)
z

for the function f(x, y) = x2 + y2.

2For general manifolds the existence of global integrals of closed forms depends on the de-Rham coho-
mology group of the manifold.
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(e) Show the relation (
∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

.

(f) Finally consider three dependend variables u(v, w), v(u,w), w(u, v), that means we can
imagine these three variables as coordinates on a two-dimensional space. First, show
that (

∂u

∂v

)
w

=
1(
∂v
∂u

)
w

.

Use this relation to show the chain rule(
∂u

∂v

)
w

(
∂v

∂w

)
u

(
∂w

∂u

)
v

= −1 ,

by using a curve in the (v, w) space along which u is constant, such that du = 0.

–Homework–

H 3.1 Temperature of the Spin Ensemble (2+1+2=5) Points
Consider the spin ensemle from exercise H 2.2.

(a) From exercise H 2.2b) one can see, that ω(E, δE) is approximately given by

logω(E, δE) = −1

2

(
N − E

µB

)
log

(
1

2
− E

2NµB

)
− 1

2

(
N +

E

µB

)
log

(
1

2
+

E

2NµB

)
,

where we neglected the irrelevant term log(δE/2µB). Express the energy E in terms
of its temperature T .

(b) In which cases is T negative?

(c) Express the magnetization M = µ(n1 − n2) in terms of the temperature.

H 3.2 Two Spin Ensembles (4+4+2=10) Points
Consider two copies of the spin ensemble from exercise H 2.2 in a magnetic field B. We
denote the number of particles and magnetic moment of the first ensemble by N and µ,
those of the second ensemble by N ′ and µ′. The energies of the ensembles are then given

by bNµB and b′N ′µ′B respectively, where b = 1 − 2n1

N
and b′ = 1 − 2n′1

N ′ . Let |b|, |b′| � 1,
such that the expressions for the densities of states ω that were deduced in exercise H 2.2d)
are valid.
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(a) Show that in the thermodynamical equilibrium, that means in the most probable con-
figuration of the system, the entropiesẼ and Ẽ ′ of the two subsystems are related
by

Ẽ

µ2N
=

Ẽ ′

µ′2N ′

and calculate Ẽ.
Hint: Neglect terms involving δE(′).

(b) The probability P (E)dE for the first ensemble to have an energy between E and
E + dE in the equilibrium configuration is proportional to the number of states in
the equilibrium configuration of the total system in which the first ensemble has this
energy. Show, that

P (E)dE =
1√

2πσ2
e−

(E−Ẽ)2

σ2 dE ,

where σ2 = µ2µ′2B2NN ′

µ2N+µ′2N ′
.

Hint: What is
∫∞
−∞ P (E)dE?

(c) Calculate the variance (∆E)2.

H 3.3 Ideal Gas (2+3=5) Points
In the limit of a very big and fixed number of particles, the entropy of an ideal gas is given
by

S(E, V ) = kN log

[
V

N

(
4πmE

3Nh2

) 3
2

e
5
2

]
.

(a) Express the energy E in terms of the temperature.

(b) The pressure is defined as

P = T

(
∂S

∂V

)
E

.

Calculate P and deduce the thermal equation of state of the ideal gas, that means
express its pressure in terms of V and T .
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