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–In-class exercises–

A 4.1 Exact differentials and integrability
In exercise A 3.1 we discussed the notion of derivatives in multidimensional analysis and
total differentials. We saw, that every total differential is a linear form and can hence
be written as a linear combination of the basis {dxi} of the dual space. An element
of the dual space, which is a total differential of a function, is called exact. Let A =∑n

i=1 ai(x1, . . . , xn) dxi be an arbitrary linear form. Then, A is exact iff the following, equi-
valent integrability criteria are fulfilled1:

• ∃F with A = dF .

• ∂ai

∂xj
= ∂aj

∂xi
∀i, j ∈ {1, . . . , n}.

•
∮
A =

∮
(
∑n

i=1 ai(x1, . . . , xn) dxi) = 0.

•
∫ P1

P0
A =

∫ P1

P0
(
∑n

i=1 ai(x1, . . . , xn) dxi) is independent of the integration contour.

(a) Let n = 2. Consider the linear form A = x1x2dx1 + x2
1dx2. Show, that A is not exact,

whereas 1
x1
A is. Calculate the integral F , which satisfies dF = 1

x1
A = x2dx1 + x1dx2.

The factor 1
x1

, which in the above example converts a non-exact linear form A into an exact
one, is an example for an integrating factor. Now, let A be an arbitrary, non-exact linear
form. Then, g is an integrating factor, iff

∂(gaj)

∂xi

=
∂(gai)

∂xj

, ∀i, j ∈ {1, . . . , n}

is satisfied.

(b) Again, let n = 2 and A = x1x2dx1 + x2
1dx2. Determine the integrating factor.

In the lecture we deduced the first law of thermodynamics (for a constant number of
particles)

dE = TdS − PdV

from the total differential of the entropy in the microcanonical ensemble. Here, the first
term can be interpreted as the change of heat δQ of, and the second one as the work δA
done upon the system.

1This only holds necessarily for star domains.
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(c) Show that, both δQ and δA are non-exact. It is hence impossible to define correspon-
ding thermodynamical functions of state. Determine an integrating factor for δQ.
Hint: Use, that dF = −SdT − pdV is an exact differential.

The connection between work done upon the system or the change of heat of the system
and the thermodynamical functions of state is therefore only apparent in a differential way.
One can look at the integral

∫
C
δQ =

∫
C
TdS along a curve C (and analogously for δA),

but the value of such an integral will not only depend on the starting and endpoint of
the integral but also on the precise form of the curve. Especially will

∮
C
δQ along a closed

contour C be different from zero, a fact which is essential for thermodynamical cycles which
we will look at later.

A 4.2 Legendre Transformation
Let f(x1, . . . , xn) be a function. The aim of a Legendre transformation is, to change the de-
pendence of the function f from the variables (x1, . . . , xn) to the variables (x1, . . . , xi−1, ui, xi+1, . . . , xn),
where ui = ∂f

∂xi
. First, consider the case n = 1 and write shorthand x = x1.

Let Tx0(x) be the family of tangents to the function f(x) at the points x0. It is given by

Tx0(x) = f(x0) +
∂f

∂x

∣∣∣∣
x=x0

(x− x0) ≡ f(x0) + f ′(x0)(x− x0) .

The intercepts g(x0) of these tangents are given by

g(x0) = f(x0)− x0f
′(x0) .

If the map x 7→ f ′(x) is bijectiv, the funktion g(x) contains the same information as f(x)
(this is the case when f ′(x) is strictly monotonic). One then calls g the Legendre transform
of f and

g = f − xu , u ≡ ∂f

∂x
.

Graphically g(x) is the y-axis intercept of the tangent to f(x) at the point (x, f(x)).

(a) Show, that g only depens on u.

(b) Calculate the Legendre transform g of the function f(x) = x2 as well as its total
differential.

(c) What is the Legendre transform of the function f(x) = x?

(d) Show that the Legendre transformation is an involution, that means that its twofold
action on a function gives back the function itself.

The generalization for arbitrary n is now straightforward. If we want to replace the variable
xi by ui = ∂f

∂xi
, we take

g(x1, . . . , xi−1, ui, xi+1, . . . , xn) = f(x1, . . . , xn)− xiui .

(e) Show, that g does not depend on xi.
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The most well-known application of the Legendre transform is the transition from the
Lagrange- to the Hamilton function in classical mechanics. But also in the context of
thermodynamics it has broad applications. Thermodynamical systems are completely de-
termined by three functions of state. Using Legendre transformations one can go to a
different choice for those functions of state. In the microcanonical ensemble, the functions
of state are, for example, given by its inner energy E, the volume V and number of par-
ticles N , while they are given by temperature T , V and N in the canonical ensemble. The
thermodynamic potential of the microcanonical ensemble is the entropy S(E, V,N) and
its Legendre transform, the free energy F (T, V,N), is the thermodynamic potential of the
canonical ensemble.

–Homework–

H 4.1 Real gas (3+4+3=10) Points
We want to consider a real gas in the canonical ensemble. Let N (N � 1) the number
of molecules in a box with volume V . The system has temperature T and its Hamilton
function is given by

H =
N∑

i=1

p2
i

2m
+
∑
i<k

U(|xi − xk|) ,

where xi and pi describe position and momentum of the i-th molecule and the potential
U only depends on the relative distance of the molecules. As a good approximation to the
two-particle potential, we will use the Sutherland potential

U(r) =

{
∞ r < r0

−U0

(
r0

r

)6
r ≥ r0

,

which treats the molecules as solid balls with radius r0/2.

(a) Consider the canonical partition function

Z =
1

N !h3N

∫
d3Nx d3Np exp {−βH(xi, pi)} .

Show, that

Z =
1

N !

(
2πmkT

h2

)3N/2
{
V N + V N−2

∑
i<k

∫
d3xi

∫
d3xk (exp{−βU(|xi − xk|)} − 1) + . . .

}
,

by expanding Z around the parameter 1� fik = exp{−βU(|xi − xk|)} − 1.
Hint:

∏
i<k(1 + fik) = 1 +

∑
i<k fik + . . . .

(b) Show, that

Z =
1

N !

(
2πmkT

h2

)3N/2

V N

{
1 +

N2u

2V
+ . . .

}
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and that

p =
∂

∂V
(kT logZ) ≈ NkT

V

(
1− u

2

N

V

)
,

is fulfilled, where we write shorthand

u = 4π

∫ ∞
0

r2dr (exp{−βU(r)} − 1) .

Hence, the equation of state of the real gas only differs to the one of the ideal gas by
a correcting factor

(
1− u

2
N
V

)
.

(c) Now we want to use the Sutherland potential to calculate the integral in u. Show, that
the equation of state is given by

p =
NkT

V

{
1 +

2πNr3
0

3V

(
1− U0

kT

)}
.

Hint: Use βU0 � 1 to expand the exponential up to linear order.

One can rewrite the equation of state as(
p+

aN2

V 2

)(
V

N
− b
)

= kT ,

which is the equation of state of a Van-der-Waals gas, by using that the volume 4πr3
0/3 of

the molecules is, in the case of not too high pressures, small compared to the volume per
particle V/N . In this way, one can calculate the Van-der-Waals parameters

a =
2π

3
r3

0U0 , b =
2π

3
r3

0

from statistical physics.

H 4.2 Gibbs’ paradoxon (2+3=5) Points
A thermodynamically isolated container is divided into two chambers by an isolated wall.
Both chambers contain ideal gases with constant heat capacity cV = T

(
∂S
∂T

)
V,N

. The first

chamber contains N1 particles at the temperature T1 and pressure p1, the second chamber
contains N2 particles at the temperature T2 and pressure p2.

(a) Now the wall is made movable and its thermal isolation is removed. After the system
going to its equilibrium both gases have the same pressure p and the same temperature
T . Calculate these using the equations of state of the ideal gas.

(b) The wall is now removed. Calculate the change in total entropy S induced by the
mixing in cases the gases are (1) different and (2) identical. Here, the entropy of an
ideal gas is approximated by

S = Nk

[
log V +

3

2

(
1 + log(2pmkT/h2)

)]
.

Why does the second case lead to an objection?

4



H 4.3 Energy fluctuations in the canonical ensemble 5 Punkte
In the case of a canonical ensemble, the probability of the energy to take the value Ei is
given by

P (Ei) =
1

Z
exp (−βE) ,

where Z =
∑

k exp (−βEk). Show, that the variance of the energy is given by

(∆E)2 = −∂ 〈E〉
∂β

= kT 2∂ 〈E〉
∂T

.

The relative standard deviation

√
(∆E)2

〈E〉 is hence proportional to N−
1
2 . In the limit N →∞

the energy distribution of the canonical ensemble approaches the one of the microcanonical
ensemble, which, for a given energy value E0 of the system is given by δ(E − E0).
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