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–Class Exercises–

A 6.1 Ideal Gases with Inner Degrees of Freedom
When we looked at gases in the previous exercises, we always treated them as mass points
or hard spheres without any inner degrees of freedom. However, most of the gases consist
of molecules which can have inner motions like rotations or vibrations. Here we want to
look at the impact of these features on the thermodynamic properties of such gases. We
will assume the inner degrees of freedom to be independent of each other, such that we
can write the Hamilton function of a single molecule as

H = Htrans(Q,P ) +Hrot(φi, pφi) +Hvib(q, p) .

Here Htrans describes the motion of the center of mass of the molecule, Hrot is the rotational
energy and depends on the Euler angles φi ∈ {θ, φ, ψ} and the corresponding angular
momenta pφi and Hvib describes the energy of the oscillations of the molecule, which depend
on the generalized coordinates of the f normal modes and the corresponding momenta.
The canonical single-particle partition function

Z(T, V, 1) =
1

h6+f

∫
d3R

∫
d3P

∫
d3φ

∫
d3pφ

∫
dfq

∫
dfp exp{−β (Htrans +Hrot +Hvib)} ,

then factorizes according to

Z(T, V, 1) = ZtransZrotZvib ,

where

Ztrans =
1

h3

∫
d3R

∫
d3P exp{−βHtrans} ,

Zrot =
1

h3

∫
d3φ

∫
d3pφ exp{−βHrot} ,

Zvib =
1

hf

∫
dfq

∫
dfp exp{−βHvib} .

Furthermore we assume the gas to be non-interacting, such that the canonical partition
function of the gas with N particles is given by

Z(T, V,N) =
1

N !
[Z(T, V, 1)]N =

1

N !
ZN

transZ
N
rotZ

N
vib .

Moreover we will neglect the contributions of the vibrational energy.
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(a) Assume Htrans(Q,P ) = P 2

2M
and show that

Ztrans = V

(
2πMkT

h2

)3/2

and that the free energy fulfills

Ftrans = −NkT
[
log

{
Ztrans(T, V, 1)

N

}
+ 1

]
.

Hence Ftrans is exactly the free energy of an ideal gas.

Now we want to calculate Zrot. The Lagrange function of a symmetric gyroscope with the
momenta of inertia I1, I2 = I1 and I3 is given by

Lrot =
I1
2

(
θ̇2 + φ̇ sin2 θ

)
+
I3
2

(
ψ̇ + φ̇ cos θ

)2

.

Here θ ∈ [0, π], φ ∈ [0, 2π], ψ ∈ [0, 2π].

(b) Show that by going to the canonical momenta pφi = ∂L
∂φ̇i

one gets the Hamilton function

Hrot =
p2
θ

2I1
+
p2
ψ

2I3
+

(pφ − pψ cos θ)2

2I1 sin2 θ
,

where we assume I1, I3 6= 0.

(c) Show that Zrot is given by

Zrot =
(2π)3

h3

√
2πI1
β

√
2πI1
β

√
2πI3
β

.

(d) Consider a diatomic molecule. Argue that for this special case

Zrot =
8π2

h2

I1
β

holds. How does Zrot change in the case of a homonuclear diatomic molecule?

(e) Show that the free energy fulfills

E =

{
5
2
NkT for diatomic gases,

3NkT for multiatomic gases
.

Now one can calculate the specific heat CV =
(
∂E
∂T

)
V,N

and get an impressing agreement

with experimental data for gases of e.g. He, Ar, O2, N2, H2, CO2 and N2O, which differ by
at most 7%.
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–Homework–

H 6.1 Isothermal-Isobaric Ensemble (7+3=10) Points
Consider, analogously to the grand canonical ensemble, a small subsystem 1, which is
embedded in a big system 2. The number of particles of both systems, N1 and N2 are
fixed. The volume V1 of the subsystem is variable, while the total volume V1 + V2 = V is
kept constant. Furthermore we allow energy exchange between the two system at constant
total energy E = E1 + E2. An example of such a system is given by a balloon filled with
gas in a thermal bath.

(a) Show, by performing steps similar to those used to deduce the grand canonical density
matrix, that the density matrix of this ensemble is given by

ρII = Z−1
II e−β(H1+pV1) =

e−β(H1+pV1)

Sp e−β(H1+pV1)
,

where p describes the pressure and T = 1
kβ

the temperature in the equilibrium state.

Hint: The pressure is defined as p = kT ∂
∂V

log Ω(E,N, V ).

(b) Define G = −kT logZII and show the relation

G = Ē + pV̄ − TSII ,

where we suppress the indices referring to the subsystem 1. G is the free enthalpy or the
Gibbs’ free energy, which we will encounter again in the context of thermodynamics.

H 6.2 Energy Density of a Canonical Ensemble (3+2+3+2=10) Points
Consider a canonical ensemble, which possesses the equation of state

PV = αE(T, V ) ,

where α is a positive constant.

(a) Use the integrability condition of the free energy F ,(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

,

to show the following partial differential equation for E(T, V )(
∂E

∂V

)
T

= −α
V
E +

αT

V

(
∂E

∂T

)
V

.

(b) Verify, that this differential equation is solved by the Ansatz

E(T, V ) = V −αφ(TV α) ,

where φ is an arbitrary differentiable function. Note (without proof), that this is the
general solution of the partial differential equation.
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(c) Show, that the entropy must be of the form S = ψ(TV α), where the function ψ fulfills
the relation φ′(x) = xψ′(x).

(d) Assume that the energy density E/V only depends on T . Show that in this case

E

V
= σT

1+α
α

must be fulfilled, where σ is a proportionality constant. For α = 1/3 one gets the
Stefan-Boltzmann law for black body radiation.
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