
Addendum to H1.2(d)

In H1.2(d) you were supposed to show that U(n) ' SU(n)×U(1). The prove we discussed
in the tutorials worked as follows:
Consider the subgroups SU(n) ⊂ U(n) and U(1) ∼= {eiα|α ∈ [0, 2π/n)} ⊂ U(n). Note that
the group multiplication in this U(1) is defined “modulo e2πi/n”. It is easy to see that they
are both normal since they commute with one another.
Their common elements are of the form g = eiα1 such that 1 = det g = einα which implies
α = 0 and thus g = e and the second condition of (c) is fulfilled.
Now let g ∈ U(n). We decompose it as g = h1h2 with h1 = (det g)1/n

1 such that the
argument of the nth root is an element of [0, 2π/n). Obviously h1 ∈ U(1). We further find
deth2 = det gh−1

1 = det g(det g)−1 = 1 and hence h2 ∈ SU(n).
This does not hold, because of the following: If we want to see the elements of U(1) and
U(n) as elements of subgroups of U(n), we have to find a homomorphism from U(1) to
a subgroup of U(n). The canonical way to do this is: eiα 7→ eiα

1n. The problem is now,
that this map is not a well-defined homomorphism due to the difference between the group
product of U(n) and the one of U(1) as we defined it above.
Here we first show that its impossible to write U(n) as the direct product of SU(n) and
U(1) and then, in the second part, show that actually U(n) ' [SU(n)× U(1)] /Zn.

1 U(n) 6' SU(n)× U(1)

In H1.2(c) we have shown that a group G is a direct product of two subgroups H1, H2 if

• H1 and H2 are normal,

• H1 ∩H2 = {e},

• they generate the group, G = H1H2.

Now while the elements of U(n) and SU(n) are canonically defined via their action on Cn,
those of U(1) are defined by their action on C. Hence, in order to check the above criteria,
we have to write the elements of U(1) as elements of U(n), that is we have to find a group
homomorphism from U(1) to a subset of U(n).
Now it is easy to see that there is not only one such homomorphism. For instance we can
homomorphically map U(1) = {eiα|α ∈ [0, 2π)} into U(2) = {U ∈ GL(2,C)|U †U = 12} as

ΦA :
U(1) −→ U(2)

eiα 7−→ eiα
12

,

or as

ΦB :

U(1) −→ U(2)

eiα 7−→
(

eiα 0
0 e−iα

)
.

Recall, however that we need to fulfill the second requirement, i.e. the image of the
homomorphism from U(1) to U(n) should commute with all of SU(n), hence it has to be
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proportional to the unit matrix 1n (This follows from Schur’s Lemma). Hence, consider
the map

Φf :
U(1) −→ U(n)

eiα 7−→ f
(
eiα
)
1n

,

where f is a well-defined, continuous map f : C→ C. In order for Φ to be a homomorphism
it further needs to fulfill

f(ab) = f(a)f(b) , ∀a, b ∈ C .

Let us assume that f is also infinitely differentiable1. Then we can expand it in a power
series and find that the only possible functions are of the form2

f(z) = zm , where 0 6= m ∈ N

and hence the possible homomorphisms are given by

Φm :
U(1) −→ U(n)

eiα 7−→ eimα
1n

.

Now let us consider the elements of U(n) which are both in SU(n) and the image of Φm.
They are of the form

U(n) 3 g = eiα
1n ,

where only those that fulfill det g = einα = 1 are in SU(n). Therefore the set of elements
of U(1), of which the image under Φm is in SU(n), is given by{

eik 2π
nm1n

∣∣∣ k ∈ N} ⊂ U(1) ,

which is more than just the identity element. Hence U(n) cannot be the direct product of
U(1) and SU(n).

2 U(n) ' [SU(n)× U(1)] /Zn

The easiest way to see this is to define the group homomorphism

Ψ :
U(1)× SU(n) −→ U(n)

(eiθ,M) 7−→ eiθM
,

which is surjective and of which the kernel is given by

ker Ψ =
{

ei 2π
n
k, e−i 2π

n
k
1n|k = 0, 1, . . . , n− 1

}
,

which is Zn. Then the claim follows from the Isomorphism theorems.

1This makes sense, since both U(1) and U(n) are (infinitely) differentiable manifolds.
2Write f(z) =

∑
k akzk. Then the condition f(a)f(b) = f(ab) with b = a−1 means that there can only

be one term. The same condition with a = b = 1 means that the coefficient has to be one.
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A more explicit way to see it is as follows:
Let us consider the direct product group P = SU(n) × U(1). The elements are ordered
pairs of the elements of the group factors P = {(g, h)|g ∈ SU(n) , h ∈ U(1)} and the group
multiplication is inherited from the factors as (g, h) ·P (g′, h′) = (g ·SU(n) g

′, h ·U(1) h
′).

Now consider the subgroup

Zn,P ≡ {(e, h) ∈ P |hn = e} ,

which is clearly normal since it lies in the center of P . Let us therefore consider the quotient
group P/Zn,P , which is given by the conjugacy classes{

[(g, h)]|(g, h) ∈ P and ∀(g, h), (g′, h′) ∈ P , (g, h) ∼ (g′, h′)⇔ (g, h)(g′, h′)−1 ∈ Zn,P
}
.

In other words, two elements (g, h) and (g′, h′) of P are in the same conjugacy class, if and
only if g = g′ and hn = h′n.
Finally, consider the map

Φ :
P/Zn,P −→ U(n)

[(g, h)] 7−→ Φ1(h)g
.

It is

• a homomorphism since both the inclusion and Φ1 are homomorphisms.

• well-defined: Take (g, h) ∼ (g′, h′) that means g = g′ and (hh′−1)n = e. Clearly this
implies that [(e, hh′−1)] = [(e, e)]. Then

Φ ([(g′, h′)]) = Φ ([(g, h′)]) = Φ ([(e, e)][(g, h′)]) = Φ
(
[(e, hh′−1)][(g, h′)]

)
= Φ ([(g, h)]) .

• injective: Let Φ ([(g′, h′)]) = Φ ([(g, h)]). This means that Φ1(hh
′−1) = g′g−1, but

Φ1(hh
′−1) is proportional to the unit matrix 1n. Further g and g′ are both elements

of SU(n) which is a closed group. Therefore we find that det (Φ1(hh
′−1)) = 1 or

hn = h′n. As we have seen above, this implies that [(g′, h′)] = [(g′, h)]. Then
Φ ([(g′, h)]) = Φ ([(g, h)]) directly implies g = g′.

• surjective: Let U ∈ U(n). Then we can decompose it as U = (detU)1/n
1ng. Since

| detU | = 1 there is an h ∈ U(1) such that (detU)1/n
1n = Φ1(h). Further we find

det g = 1 such that g ∈ SU(N). Note that here (detU)1/n ≡ eLog(detU)/n, where we
take the principal value of the logarithm.

Hence Φ is an isomorphism and we have proven

U(n) ' [SU(n)× U(1)] /Zn .
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