(1 point)

Exercises on Group Theory

Priv.-Doz. Dr. Stefan Förste

-Home Exercises-

H 11.1 U(n) decomposition (2 points) Remember that the Lie algebra of U(n) consists of the Hermitean $n \times n$ matrices. Find a one-dimensional null space¹ $\mathfrak{h} \subset \mathfrak{u}(n)$. Identify the associated subgroup of U(n). This shows that U(n) is not semi-simple.

H 11.2 Adjoint representation (3 points) Consider a Lie algebra \mathfrak{g} with basis T_i and structure constants $[T_i, T_j] = f_{ijk}T_k$. Show that the *adjoint representation*, defined by

$$\operatorname{ad}(T_i)_{jk} = -f_{ijk}$$

is a representation. What is its dimension?

H 11.3 On Lie algebras and Killing froms (8+4* points)Let \mathfrak{g} be a Lie algebra with basis $\{T_i\}$ and $g_{ij} = (T_i, T_j)$ a matrix representation of the Killing form. We denote the center of the algebra by $\mathfrak{Z}(\mathfrak{g})$.

- (a) Let $X \in \mathfrak{Z}(\mathfrak{g})$. What is the matrix form of $\mathrm{ad}(X)$?
- (b) Show: If g contains an Abelian ideal, then g_{ij} is degenerate. *Hint: Choose a Basis such that* T₁,..., T_m generate the Abelian ideal. Write g_{ij} in terms of the structure constants and the structure constants in terms of commutators. Show that g_{1i} = 0 for all i. (3 points)
- (c) Bonus: Show that the converse is also true. (4* points)
- (d) Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ with \mathfrak{g}_i simple. Show that the Killing form is block-diagonal. (2 points)
- (e) Let \mathfrak{g} be semisimple. Show that every generator can be written as a sum of commutators. (2 points)

¹Here "null space" means a set that gets mapped to zero by the commutator.

H 11.4 $\mathfrak{su}(2)$ representations

- (a) Show that the adjoint representation of $\mathfrak{su}(2)$ is the J = 1. Identify the states $|J = 1, M = \pm 1, 0\rangle$ in terms of the generators. (1.5 points)
- (b) Consider the representation tensor product $(J = 1) \otimes (J = 1/2)$. Show first that $J_3|j_1, m_1\rangle \otimes |j_2, m_2\rangle = (m_1 + m_2)|j_1, m_1\rangle \otimes |j_2, m_2\rangle$. Decompose the product space into irreducible subspaces and identify the states. (2.5 points)
- (c) We normalize the Hilbert space states as $\langle j, \alpha | j, \beta \rangle = \delta_{\alpha\beta}$, where α and β stand for other quantum numbers and j is the highest weight. Show that this implies orthogonality of the other states, i.e. $\langle j k, \alpha | j k', \beta \rangle \sim \delta_{\alpha\beta} \delta_{kk'}$. (1.5 points)
- (d) Within one irreducible representation we use the normalization $\langle j, m | j', m' \rangle = \delta_{mm'}$. Show that the normalization constants in

$$J_{-}|j-k\rangle = N_{j-k}|j-k-1\rangle, \qquad J_{+}|j-k-1\rangle = N_{j-k}|j-k\rangle$$

are indeed the same.

(e) Convince yourself of the recursion formula

$$N_{j-k}^2 = j - k + N_{j-k+1}^2 \,.$$

Show that $N_{j-k} = \frac{1}{\sqrt{2}}\sqrt{(2j-k)(k+1)}$ is a solution with the boundary condition $N_j = \sqrt{j}$. (1 point)

 $\mathbf{2}$

(8 points)

(1.5 points)