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Advanced Condensed Matter Theory — SS09

Exercise 1

1.1. Bosonic coherent states (14 points)

The coherent states |φ〉 are defined as the eigenstates of the bosonic annihilation
operator a.

ai|φ〉 = φi|φ〉 , φi ∈ C

a) Since |φ〉 is a state of the Fock space, it can be expanded

|φ〉 =
∑

n1,n2,...

Cn1,n2,...|n1, n2, . . .〉 (1)

where |n1, n2, . . .〉 =
(a†1)n1
√
n1!

(a†2)n2
√
n2!

. . . |0〉. Show that |φ〉 can be written as

|φ〉 = exp

[∑
i

φia
†
i

]
|0〉

Hint: By applying the annihilation operator on (1) one can obtain a recursive
relation for the coefficients Cn1,n2,.... Assume C0,0,... = 1

b) Show that the action of the creation operator on |φ〉 is given by

a†i |φ〉 =
∂

∂φi
|φ〉

and

〈φ|ai =
∂

∂φ̄i
〈φ|

c) Show that the coherent states form a complete set of states in the Fock space,
i.e. ∫ ∏

i

dφ̄idφi
π

e−
P

i φ̄iφi |φ〉〈φ| = 1 (2)

where dφ̄idφi = d(Re φi)d(Im φi). Hint: Following Schur’s lemma the LHS of
(2) is proportional to 1 if it commutes with all operators in the Fock space. Since
all operators can be expressed in terms of creation an annihilation operators it
is sufficient to show that the LHS commutes with them. The proportionality
constant can be obtained by calculating the vacuum expectation value of the
LHS.

d) Show that by inserting the completeness relation (2) the trace of an operator A
is converted to an integral over the coherent state eigenvalues.

tr[A] =
∑
n

〈n|A|n〉 =

∫ ∏
i

dφ̄idφi
π

e−
P

i φ̄iφi〈φ|A|φ〉



1.2. Fermionic coherent states - the Grassmann algebra (8 points)

One can define the fermionic coherent states in the same way than for the bosonic
case

ai|η〉 = ηi|η〉
But the anticommutativity of the fermionic operators [ai, a

†
j]+ = δij implies that

ηiηj = −ηjηi for i 6= j ⇒ η2
i = 0

Cleary these objects can not be ordinary numbers. They are so called Grassmann
variables. The Grassmann algebra A is a vector space over C together with an
anticommutative and associative product. In addition a conjugation operation is
defined by ¯(η) = η̄ and ¯̄η = η such that (ηa)† = a†η̄. Functions of Grassmann
variables exhibit a amazingly simple property: Since any power of η higher than one
vanishes a function of e.g. two Grassmann variables can be written as (Taylor series):

f(ηi, ηj) = c0 + c1ηi + c1ηj + c2ηiηj (3)

where the constants ci ∈ C.

a) The differentiation of Grassmann variables is defined in the following way.

∂

∂ηi
ηj = δij

and the integration over Grassmann variables is defined by∫
dηi = 0

∫
dηiηi = 1.

Note that one cannot ignore the order of Grassmann variables:

∂

∂ηi
ηjηi = − ∂

∂ηi
ηiηj = −ηj∫

dηiηjηi = −
∫
dηiηiηj = −ηj

The last lines indicate that differentiation and integration are effectively the
same for Grassmann variables. Show that

∂

∂ηi
f(ηi, ηj) =

∫
dηif(ηi, ηj) = c1 + c2ηj

holds. Calculate the integral∫
dηf(η + ξ) =

∫
dηf(η) η, ξ ∈ A (4)

b) To be consistent with the anticommutation relations the Grassmann variables
has to anticommute with the fermion operators [ηi, aj]+ = 0. Show that

|η〉 = exp

[∑
i

−ηia†i
]
|0〉.



1.3. Gaussian Integrals (8+5 points)
When evaluating functional integrals one is often faced with calculating Gaussian
integrals of either complex numbers or Grassmann variables. Therefore, some impor-
tant basic relations shall be derived in the following. We use the shorthand notations
(x, y) =

∑n
i=1 x̄iyi and (x,Ay) =

∑n
i,j=1 x̄iAijyj, respectively.

a) Let A ∈ Rn×n be a positive-definite diagonal matrix. Show

∞∫
−∞

n∏
i=1

dxi√
π
e−(x,Ax) =

1√
detA

.

b) Let A ∈ Cn×n be a positive-definite Hermitian matrix and y ∈ Cn. Show∫ n∏
i=1

dz̄idzi
π

e−(z,Az)+(y,z)+(z,y) =
e(y,A−1y)

detA
.

Hint: Use an unitary transformation z′ = Uz, y′ = U †y to diagonalize A.
Rewrite the integral with respect to the real and imaginary part of z, complete
the square and use the result of a).

c) For a ∈ C calculate the Grassmann integral∫
dη̄dη e−η̄aη = a.

Hint: Expand the exponential in a power series to show that only one single
term contributes to the integral. Pay attention to the order of the integration
variables.

d)* Now consider the case of a diagonal matrix A ∈ Cn×n. Show∫ n∏
i=1

dη̄idηi e
−(η,Aη) = detA.

Hint: Again only one term of the power series can contribute. Which one?
Reorder the integration variables to obtain the result.

e)* Finally, deduce for a general A ∈ Cn×n and ξ ∈ A∫ n∏
i=1

dη̄idηi e
−(η,Aη)+(ξ,η)+(η,ξ) = detA · e(ξ,A−1ξ).

Hint: Complete the square and use the linear transformation from (4). For
reordering the only contributing term the Leipniz formula for determinants may
be useful: detA =

∑
P∈Sn

sgn(P )A1P (1) · ... · AnP (n), where the sum runs over
all permutations of {1, .., n}.


