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Advanced Theoretical Condensed Matter Physics — SS09

Exercise 3

(Please return your solutions before Fr. 22.5.2009, 12h)

3.1. Linear Response Theory (15 points)

In the following we will investigate the general question: “How does a physical quan-
tity change if an external field is applied?”. We consider a many-body system H0 and
a perturbation which is explicitly time dependent:

H = H0 − µN + Vt = H0 + Vt (1)

The perturbation Vt is switched on at time t→ −∞ so that lim
t→−∞

Vt = 0 . Vt is given

by an time dependent external field φt which couples to the observable B:

Vt = φtB̂

For example an the electric potential will couple to the charge density n(r) = ψ†(r)ψ(r).

Vt = −e0

∫

d3rφel(r, t)n(r)

The density matrix of the full Hamiltonian (1) in the Schroedinger picture is given
by

ρS
t =

exp(−βH)

tr[exp(−βH)]

It turns out to be usefull to write all operators in the interaction picture, e.g. the
density matrix

ρ(t) = exp
(

iH0t
)

ρS
t exp

(

−iH0t
)

Note that the subscript t refers to the explicit time dependence in contrast to the
time dependence introduced by the interaction picture. From now on all operators
which are not explicitly marked are meant to be written in the interaction picture.

a) Derive an implicit equation for the density matrix in the interaction picture by
integrating the equation of motion

ρ̇(t) = −i
[

V (t), ρ(t)
]

−

and using the initial condition

lim
t→−∞

ρ(t) = ρS
0



b) If the perturbation is assumed to be small, it is sufficient to consider only terms
which are linear in V (t). Use the result of a) to show that the density matrix
in the Schroedinger picture reads

ρS
t = ρS

0 − i

∫ t

−∞

dt′ exp
(

−iH0t
)[

V (t′), ρS
0

]

−
exp
(

iH0t
)

(2)

We are interested in the expectation value of an observable A if an external field φt

is applied which couples to the observable B̂.

c) Calculate the expectation value 〈A〉t = tr(ρS
t A). to show that

∆At = 〈A〉t − 〈A〉0 = −i

∫ t

−∞

dt′φt′〈
[

A(t), B(t′)
]

−
〉0

Hint: Use cyclic permutation under the trace.

A general retarded Green’s function of the operators A and B is defined as follows

GR
AB(t, t′) = −iΘ(t− t′)

〈[

A(t), B(t′)
]

−

〉

0

Note: If you plug in ψ†(x) and ψ(x) for A and B you obtain the retarded single particle
Green’s function as it was defined in the lecture. In the same way the k-dependent
Green’s function is constructed by plugging in a†k and ak.

d) Express ∆At in terms of the retarded Green’s function GR
AB(t, t′).

GR
AB(t, t′) is also called A-B-response function.

3.2. Feynman diagrams: 1st order perturbation theory (15 points)
Generally, Green’s function cannot be calculated exactly, but one has to use appro-
priate approximations. In this exercise, we want to use perturbation theory and to
practice the calculation of Feynman diagrams. For that purpose, consider the Hamil-
tonian H of interacting electrons,

H ≡ H0 + V =
∑

k,σ

(ǫ(k) − µ) c†kσ ckσ +
∑

k,k′,q
σ,σ′

V σ,σ′

q c
†
k+q,σ c

†
k′−q,σ′ ck′σ′ ckσ.

We want to calculate the single-particle Matsubara Green’s function Gkσ(iω) by treat-
ing the potential V as a perturbation. According to Dyson’s equation,

Gkσ(iω) = G0
kσ(iω) +G0

kσ(iω)Σkσ(iω)Gkσ(iω),

we have to calculate the self energy Σkσ(iω). Restricting to 1st order in V this
corresponds to the evaluation of the two Feynman diagrams

.



a) General case:

Use the Feynman rules to show that the first diagram (Hartree term) yields

Σ
(H)
kσ (iω) =

(

V
σ,σ
q=0 + V

σ,−σ
q=0

)

∑

k′

f(ǫ(k′) − µ)

and the second one (Fock term) yields

Σ
(F)
kσ (iω) = −

∑

q

V σ,σ
q f(ǫ(k − q) − µ).

Hint: Recall that for a holomorphic function F (z)

1

β

∑

ω

F (iω) = −

∮

C1

dz

2πi
f(z)F (z) =

∮

C2

dz

2πi
f(z)F (z),

where C1 encloses only the poles of f(z) and C2 only those of F (z).

b) Coulomb interaction:
Consider the concrete example of a Coulomb interaction of a gas of free electrons
in three dimensions. The Fourier transform of the Coulomb potential is

V σ,σ′

q =

{

0 , q = 0
1
V

4πe2
0

q2 , q 6= 0
(e0: elementary electric charge).

Use the result from a) to obtain

Σkσ(iω) = −
∑

q

V σσ
k−q f(ǫ(q) − µ)

T→0
=

e20
2π
kF

(

2 +
k2

F − k2

kkF

ln

∣

∣

∣

∣

∣

kF + k

kF − k

∣

∣

∣

∣

∣

)

.

Hint:
x
∫

0

dy y ln

∣

∣

∣

∣

y − 1

y + 1

∣

∣

∣

∣

= −x−
1

2

(

1 − x2
)

ln

∣

∣

∣

∣

x− 1

x+ 1

∣

∣

∣

∣

c) Hubbard interaction:
In metals the bare Coulomb interaction gets screened by the conduction band
electrons. Therefore, the effective two-particle potential becomes short-ranged,

V (x) ≈ e−x/ξ e2
0

x
(Thomas-Fermi approximation). Assuming the screening length

ξ to be on the order of one lattice spacing one can approximate the potential
as point-like and arrives at the important Hubbard model

HHub ≡ H0 + V =
∑

k,σ

(ǫ(k) − µ) c†kσ ckσ +
U

2

∑

i,σ

c
†
i,σ c

†
i,−σ ci,−σ ci,σ,

where the index i labels the lattice sites.

Show that the Fourier transform of the Hubbard potential is V σ,σ′

q = U
2V
δσ,−σ′

and obtain from a)

Σkσ(iω) =
1

2
Un, n =

〈N〉

V
.



Feynman rules: (Matsubara representation)

1) Draw all connected, topologically distinct diagrams of order n.

2) Each vertex corresponds to V σσ′

q

ω, k, σ

ω ′, k ′
− q, σ ′

ω, k
+

q, σ

ω
′ , k

′ , σ
′

= −
1

β
V σ,σ′

q .

3) Each line ω, k, σ corresponds to −G0
kσ(iω) =

−1

iω − ǫ(k) + µ
.

4) Each non-propagating line, and , gets a factor eiω0+

.

5) Each closed fermion loop gets an additional factor (−1).

6) All internal indices (momenta, spins, energies, ...) have to be summed.


