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Advanced Theoretical Condensed Matter Physics — SS09

Exercise 4

(Please return your solutions before Mo. 8.6.2009, 10h)

4.1. Quasiparticle lifetime (15 points)

The physical properties of many (’normal’) solids can be well understood as conse-
quences of single-particle excitations, although the corresponding quantum mechan-
ical wave functions are complicated many-particle states. Landau’s theory of Fermi
liquids explains this remarkable fact by introducing the concept of quasiparticles, i.e.,
long living single-particle excitations at low energies. In this exercise, we will dis-
cuss a perturbative proof of this quasiparticle concept. For that purpose, consider an
electron gas with a local (Hubbard) interaction

H ≡ H0 + V =
∑

k,σ

(ǫ(k) − µ) c†kσ ckσ + U
∑

k,k′,q

c†k+q↑ c
†
k′−q↓ ck′↓ ck↑.

a) The lifetime of a single-particle excitation is related to the imaginary part of
Σkσ(ω) (see exercise 2). In 1st order perturbation theory the self energy is real
(exercise 3.2). Thus, we have to consider the 2nd order diagram

.

Use the Feynman rules to show (ǫ̃(k) ≡ ǫ(k) − µ)

Σkσ(ω) = −U2
∑

k
1
,k

2
,k

3

(

f(ǫ̃(k2)) − f(ǫ̃(k3))
) f(ǫ̃(k1)) + b(ǫ̃(k3) − ǫ̃(k2))

ǫ̃(k1) + ǫ̃(k2) − ǫ̃(k3) − iω
×

× δ(k1 + k2 − k3 − k).

Assuming the self energy to be strongly localized in position space to show that

Σkσ(ω) ≈ −U2
∑

k
1
,k

2
,k

3

(

f(ǫ̃(k2)) − f(ǫ̃(k3))
) f(ǫ̃(k1)) + b(ǫ̃(k3) − ǫ̃(k2))

ǫ̃(k1) + ǫ̃(k2) − ǫ̃(k3) − iω
.

b) Assume that the density of states is bounded and slowly varying,
∑

k

= N0

∫

dǫ̃(k),

use b(ǫ̃(k3) − ǫ̃(k2)) ≈ −f(ǫ̃(k3) − ǫ̃(k2)), and make the analytic continuation



iω → ω + i0+ to calculate

ImΣR
kσ(ω)

T→0
≈ −

π

2
N3

0U
2ω2 ∼ ω2.

It can be shown that the contribution from n-th order pertubation theory yields
ImΣR

kσ(ω) ∼ ωn. Why does this result mean that quasiparticles with (inverse)
lifetime τ−1

k ≪ ǫ∗(k) − µ exist close to the Fermi level? What follows for the
existence of a Fermi surface?

4.2. Screening in an electron gas I: Lindhard function (15 points)

We will consider the response of a weakly interacting electron gas to a static impurity
with electric charge q0. The static electric potential induced by the impurity is

φel(r, t) =
q0
r
.

and couples to the electron density of the gas by (cf. exercise 3)

Vt = −e0

∫

ddr φel(r, t)n(r, t).

The interaction of electron gas and impurity will change the electron distribution in
the vicinity of the impurity.

a) Show that, within linear response theory, the change is given by

∆n(r, t) = −e0

∞
∫

−∞

dt′
∫

ddr′φel(r
′, t′)χ(r − r′, t− t′)

= −e0

∫

ddq

(2π)d
e−irqφ̂el(q) χ̂(q, ω = 0),

where χ(r − r′, t − t′) = −iΘ(t − t′)〈[n(r, t), n(r′, t′)]−〉0, χ̂(q, ω) is its Fourier

transform and φ̂el(q) the Fourier transform of the Coulomb potential. (The
system is translationally invariant and therefore χ depends only on r − r′.)

b) To calculate the response function we have to evaluate the Fourier transform of
the time ordered function

χM(τ − τ ′, r− r′) = −
∑

σ,σ′

〈Tτψ
†
σ(r, τ)ψσ(r, τ)ψ†

σ′(r
′, τ ′)ψσ′(r

′, τ ′)〉,

which is in absence of interaction is given by the polarization bubble

Π(q) =

ω′, k + q, σ

ω′, k, σ

.



Show that it yields

Π(q) = 2
∑

k

f(ǫ(k + q) − µ) − f(ǫ(k) − µ)

ǫ(k + q) − ǫ(k)

T→0
= 2

∫

ddk

(2π)d

Θ(µ− ǫ(k + q/2)) − Θ(µ− ǫ(k − q/2))

ǫ(k + q/2) − ǫ(k − q/2)
.

c) The main contribution arises from small momentum transfer. Therefore, assume
ǫ(k) = k2/2m and neglect all terms of order O(q2) in the denominator of the
integrand. Show

Π(q) ≈
2m

π q

∫

dd−1k⊥
(2π)d−1

k
−

∫

k
+

dk‖

k‖
with: k± =

√

k2
F − k2

⊥ ±
q

2
.

Hint: Use a coordinate system such that k = (k⊥, k‖), where k‖ denotes the
component of k pointing in the direction of q.

d) Finally, derive the Lindhard function in d = 1, 3 dimensions

Π(q) =



















m

πk
F

1

q/2k
F

ln
∣

∣

∣

1−q/2k
F

1+q/2k
F

∣

∣

∣
, d = 1

−m kF

2π2

(

1 +
1−(q/2k

F
)2

q/k
F

ln
∣

∣

∣

1+q/2k
F

1−q/2k
F

∣

∣

∣

)

, d = 3

,

which is plotted below.
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Figure 1: The Lindhard function in d = 1, 3 dimensions.


