Advanced Theoretical Condensed Matter Physics - SS09

Exercise 4

(Please return your solutions before Mo. 8.6.2009, 10h)

4.1. Quasiparticle lifetime

The physical properties of many ('normal') solids can be well understood as consequences of single-particle excitations, although the corresponding quantum mechanical wave functions are complicated many-particle states. Landau's theory of Fermi liquids explains this remarkable fact by introducing the concept of quasiparticles, i.e., long living single-particle excitations at low energies. In this exercise, we will discuss a perturbative proof of this quasiparticle concept. For that purpose, consider an electron gas with a local (Hubbard) interaction

$$
\mathcal{H} \equiv \mathcal{H}_{0}+V=\sum_{\mathbf{k}, \sigma}(\epsilon(\mathbf{k})-\mu) c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}+U \sum_{\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q}} c_{\mathbf{k}+\mathbf{q} \uparrow}^{\dagger} c_{\mathbf{k}^{\prime}-\mathbf{q} \downarrow}^{\dagger} c_{\mathbf{k}^{\prime} \downarrow} c_{\mathbf{k} \uparrow} .
$$

a) The lifetime of a single-particle excitation is related to the imaginary part of $\Sigma_{\mathbf{k} \sigma}(\omega)$ (see exercise 2). In $1^{\text {st }}$ order perturbation theory the self energy is real (exercise 3.2). Thus, we have to consider the $2^{\text {nd }}$ order diagram

Use the Feynman rules to show $(\tilde{\epsilon}(\mathbf{k}) \equiv \epsilon(\mathbf{k})-\mu)$

$$
\begin{aligned}
& \Sigma_{\mathbf{k} \sigma}(\omega)=-U^{2} \sum_{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}}\left(f\left(\tilde{\epsilon}\left(\mathbf{k}_{2}\right)\right)-f\left(\tilde{\epsilon}\left(\mathbf{k}_{3}\right)\right)\right) \frac{f\left(\tilde{\epsilon}\left(\mathbf{k}_{1}\right)\right)+b\left(\tilde{\epsilon}\left(\mathbf{k}_{3}\right)-\tilde{\epsilon}\left(\mathbf{k}_{2}\right)\right)}{\tilde{\epsilon}\left(\mathbf{k}_{1}\right)+\tilde{\epsilon}\left(\mathbf{k}_{2}\right)-\tilde{\epsilon}\left(\mathbf{k}_{3}\right)-\mathrm{i} \omega} \times \\
& \times \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}_{3}-\mathbf{k}\right) .
\end{aligned}
$$

Assuming the self energy to be strongly localized in position space to show that

$$
\Sigma_{\mathbf{k} \sigma}(\omega) \approx-U^{2} \sum_{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}}\left(f\left(\tilde{\epsilon}\left(\mathbf{k}_{2}\right)\right)-f\left(\tilde{\epsilon}\left(\mathbf{k}_{3}\right)\right)\right) \frac{f\left(\tilde{\epsilon}\left(\mathbf{k}_{1}\right)\right)+b\left(\tilde{\epsilon}\left(\mathbf{k}_{3}\right)-\tilde{\epsilon}\left(\mathbf{k}_{2}\right)\right)}{\tilde{\epsilon}\left(\mathbf{k}_{1}\right)+\tilde{\epsilon}\left(\mathbf{k}_{2}\right)-\tilde{\epsilon}\left(\mathbf{k}_{3}\right)-\mathrm{i} \omega}
$$

b) Assume that the density of states is bounded and slowly varying, $\sum_{\mathbf{k}}=N_{0} \int d \tilde{\epsilon}(\mathbf{k})$, use $b\left(\tilde{\epsilon}\left(\mathbf{k}_{3}\right)-\tilde{\epsilon}\left(\mathbf{k}_{2}\right)\right) \approx-f\left(\tilde{\epsilon}\left(\mathbf{k}_{3}\right)-\tilde{\epsilon}\left(\mathbf{k}_{2}\right)\right)$, and make the analytic continuation
$\mathrm{i} \omega \rightarrow \omega+\mathrm{i} 0^{+}$to calculate

$$
\operatorname{Im} \Sigma_{\mathbf{k} \sigma}^{R}(\omega) \stackrel{T \rightarrow 0}{\approx}-\frac{\pi}{2} N_{0}^{3} U^{2} \omega^{2} \sim \omega^{2} .
$$

It can be shown that the contribution from n-th order pertubation theory yields $\operatorname{Im} \Sigma_{\mathbf{k} \sigma}^{R}(\omega) \sim \omega^{n}$. Why does this result mean that quasiparticles with (inverse) lifetime $\tau_{\mathbf{k}}^{-1} \ll \epsilon^{*}(\mathbf{k})-\mu$ exist close to the Fermi level? What follows for the existence of a Fermi surface?

4.2. Screening in an electron gas I: Lindhard function

We will consider the response of a weakly interacting electron gas to a static impurity with electric charge q_{0}. The static electric potential induced by the impurity is

$$
\phi_{e l}(\mathbf{r}, t)=\frac{q_{0}}{r} .
$$

and couples to the electron density of the gas by (cf. exercise 3)

$$
V_{t}=-e_{0} \int d^{d} r \phi_{e l}(\mathbf{r}, t) n(\mathbf{r}, t) .
$$

The interaction of electron gas and impurity will change the electron distribution in the vicinity of the impurity.
a) Show that, within linear response theory, the change is given by

$$
\begin{aligned}
\Delta n(\mathbf{r}, t) & =-e_{0} \int_{-\infty}^{\infty} d t^{\prime} \int d^{d} r^{\prime} \phi_{e l}\left(\mathbf{r}^{\prime}, t^{\prime}\right) \chi\left(\mathbf{r}-\mathbf{r}^{\prime}, t-t^{\prime}\right) \\
& =-e_{0} \int \frac{d^{d} q}{(2 \pi)^{d}} \mathrm{e}^{-\mathrm{irq}} \hat{\phi}_{e l}(\mathbf{q}) \hat{\chi}(\mathbf{q}, \omega=0)
\end{aligned}
$$

where $\chi\left(\mathbf{r}-\mathbf{r}^{\prime}, t-t^{\prime}\right)=-\mathrm{i} \Theta\left(t-t^{\prime}\right)\left\langle\left[n(\mathbf{r}, t), n\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right]_{-}\right\rangle_{0}, \hat{\chi}(\mathbf{q}, \omega)$ is its Fourier transform and $\hat{\phi}_{e l}(\mathbf{q})$ the Fourier transform of the Coulomb potential. (The system is translationally invariant and therefore χ depends only on $\mathbf{r}-\mathbf{r}^{\prime}$.)
b) To calculate the response function we have to evaluate the Fourier transform of the time ordered function

$$
\chi_{\mathrm{M}}\left(\tau-\tau^{\prime}, \mathbf{r}-\mathbf{r}^{\prime}\right)=-\sum_{\sigma, \sigma^{\prime}}\left\langle T_{\tau} \psi_{\sigma}^{\dagger}(\mathbf{r}, \tau) \psi_{\sigma}(\mathbf{r}, \tau) \psi_{\sigma^{\prime}}^{\dagger}\left(\mathbf{r}^{\prime}, \tau^{\prime}\right) \psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}, \tau^{\prime}\right)\right\rangle
$$

which is in absence of interaction is given by the polarization bubble

Show that it yields

$$
\begin{aligned}
\Pi(\mathbf{q}) & =2 \sum_{\mathbf{k}} \frac{f(\epsilon(\mathbf{k}+\mathbf{q})-\mu)-f(\epsilon(\mathbf{k})-\mu)}{\epsilon(\mathbf{k}+\mathbf{q})-\epsilon(\mathbf{k})} \\
& \stackrel{T \rightarrow 0}{=} 2 \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\Theta(\mu-\epsilon(\mathbf{k}+\mathbf{q} / 2))-\Theta(\mu-\epsilon(\mathbf{k}-\mathbf{q} / 2))}{\epsilon(\mathbf{k}+\mathbf{q} / 2)-\epsilon(\mathbf{k}-\mathbf{q} / 2)}
\end{aligned}
$$

c) The main contribution arises from small momentum transfer. Therefore, assume $\epsilon(\mathbf{k})=k^{2} / 2 m$ and neglect all terms of order $\mathcal{O}\left(q^{2}\right)$ in the denominator of the integrand. Show

$$
\Pi(\mathbf{q}) \approx \frac{2 m}{\pi q} \int \frac{d^{d-1} k_{\perp}}{(2 \pi)^{d-1}} \int_{k_{+}}^{k_{-}} \frac{d k_{\|}}{k_{\|}} \quad \text { with: } k_{ \pm}=\sqrt{k_{\mathrm{F}}^{2}-k_{\perp}^{2}} \pm \frac{q}{2}
$$

Hint: Use a coordinate system such that $\mathbf{k}=\left(\mathbf{k}_{\perp}, k_{\|}\right)$, where $k_{\|}$denotes the component of \mathbf{k} pointing in the direction of \mathbf{q}.
d) Finally, derive the Lindhard function in $d=1,3$ dimensions

$$
\Pi(\mathbf{q})=\left\{\begin{array}{rl}
\frac{m}{\pi k_{\mathrm{F}}} \frac{1}{q / 2 k_{\mathrm{F}}} \ln \left|\frac{1-q / 2 k_{\mathrm{F}}}{1+q / 2 k_{\mathrm{F}}}\right|, & d=1 \\
-\frac{m k_{\mathrm{F}}}{2 \pi^{2}}\left(1+\frac{1-\left(q / 2 k_{\mathrm{F}}\right)^{2}}{q / k_{\mathrm{F}}} \ln \left|\frac{1+q / 2 k_{\mathrm{F}}}{1-q / 2 k_{\mathrm{F}}}\right|\right), & d=3
\end{array},\right.
$$

which is plotted below.

Figure 1: The Lindhard function in $d=1,3$ dimensions.

