Advanced Theoretical Condensed Matter Physics - SS09

Exercise 7

(Please return your solutions before Fr. 17.7.2009, 11h)
7.1. Derivation of BCS equations in Nambu-Gorkov formalism (15 points)

In this exercise, we will diagrammatically derive the BCS equations of superconductivy. For that purpose, we consider the Nambu-Gorkov Hamiltonian, which was introduced in the lecture,

$$
\hat{H}=\sum_{\mathbf{k}} \epsilon_{\mathbf{k}} \Psi_{\mathbf{k} \uparrow}^{\dagger} \tau_{3} \Psi_{\mathbf{k} \uparrow}+V \sum_{\mathbf{k}, \mathbf{k}^{\prime}}\left[\Psi_{\mathbf{k} \uparrow}^{\dagger} \tau_{3} \Psi_{\mathbf{k} \uparrow}\right]\left[\Psi_{\mathbf{k}^{\prime} \downarrow}^{\dagger} \tau_{3} \Psi_{\mathbf{k}^{\prime} \downarrow}\right],
$$

where

$$
\Psi_{\mathbf{k} \sigma}=\binom{c_{\mathbf{k} \sigma}}{c_{-\mathbf{k} \sigma}^{\dagger}} \quad \Psi_{\mathbf{k} \sigma}^{\dagger}=\left(\begin{array}{cc}
c_{\mathbf{k} \sigma}^{\dagger} & c_{-\mathbf{k} \sigma}
\end{array}\right) \quad \tau_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

As discussed in the lecture, within this formalism the propagator gets a matrix structure

$$
\begin{aligned}
\mathbf{G}(\tau, \mathbf{k}) & =-\left\langle T_{\tau}\left\{\Psi_{\mathbf{k}}(\tau) \Psi_{\mathbf{k}}^{\dagger}(0)\right\}\right\rangle \\
& =-\left(\begin{array}{cc}
\left\langle T_{\tau}\left\{c_{\mathbf{k} \uparrow}(\tau) c_{\mathbf{k} \uparrow}^{\dagger}(0)\right\}\right\rangle & \left\langle T_{\tau}\left\{c_{\mathbf{k} \uparrow}(\tau) c_{-\mathbf{k} \downarrow}(0)\right\}\right\rangle \\
\left\langle T_{\tau}\left\{c_{-\mathbf{k} \downarrow}^{\dagger}(\tau) c_{\mathbf{k} \uparrow}^{\dagger}(0)\right\}\right\rangle & \left\langle T_{\tau}\left\{c_{-\mathbf{k} \downarrow}^{\dagger}(\tau) c_{-\mathbf{k} \downarrow}(0)\right\}\right\rangle
\end{array}\right),
\end{aligned}
$$

where the quantum expectation values $\langle\ldots\rangle$ have to be taken with respect to the ground state of the superconductor. The off-diagonal elements are called anomalous propagators and become non-vanishing if a superconducting groundstate with a spontaneously broken symmetry exists. Such a phase transition can never be obtained within finite order perturbation theory, but one has to consider an infinite sum of diagrams. In our case, we restrict to the self-consistent Hartree-Fock approximation, whose self-energy diagrams are

1
1
1

Here, the double lines shall indicate that the internal propagators are not the bare ones as in usual perturbation theory, but the approximative full ones, defined via the (matrix) Dyson equation

$$
\mathbf{G}(\mathrm{i} \omega, \mathbf{k})=\left(\mathbf{G}^{0}(\mathrm{i} \omega, \mathbf{k})^{-1}-\boldsymbol{\Sigma}(\mathrm{i} \omega, \mathbf{k})\right)^{-1}, \quad \mathrm{G}^{0}(\mathrm{i} \omega, \mathbf{k})=\left(\begin{array}{cc}
\frac{1}{\mathrm{i} \omega-\epsilon_{\mathbf{k}}} & 0 \\
0 & \frac{1}{\mathrm{i} \omega+\epsilon_{\mathbf{k}}}
\end{array}\right)
$$

The Feynman rules to calculate these diagrams differ only slightly from the usual ones

- From the Nambu-Gorkov Hamiltonian we can read off that each interaction line has to be multiplied with τ_{3} at each end.
- The sum over all internal quantum numbers yields that we have to take the trace when evaluating a closed Fermi loop, $\operatorname{tr}\left\{\mathbf{G}(\mathrm{i} \omega, \mathbf{k}) \tau_{3}\right\}$.
a) Using the Feynman rules, derive the self-consistent equation for the self-energy from the diagrams above. Show that only the Fock diagram contributes to the off-diagonal elements of $\boldsymbol{\Sigma}$.
b) To find a solution of the self-consistent equation we use the BCS mean-field ansatz

$$
H_{B C S}=\sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} h_{\mathbf{k}} \Psi_{\mathbf{k}}, \quad h_{\mathbf{k}}=\left(\begin{array}{cc}
\varepsilon_{\mathbf{k}} & \Delta \\
\Delta^{*} & -\varepsilon_{\mathbf{k}}
\end{array}\right)
$$

Use the definition of the full (matrix) Green's function $\mathbf{G}(\mathrm{i} \omega, \mathbf{k})$ as the resolvent

$$
\mathbf{G}=\left(\mathrm{i} \omega \mathbb{1}-H_{B C S}\right)^{-1} \stackrel{!}{=}\left(\mathbf{G}^{0}(\mathrm{i} \omega)^{-1}-\boldsymbol{\Sigma}\right)^{-1}
$$

to obtain an ansatz for the self-energy matrix $\boldsymbol{\Sigma}$.
c) Insert your ansatz for $\boldsymbol{\Sigma}$ into the self-consistent equation of a). Consider the off-diagonal element $\boldsymbol{\Sigma}_{12}$ and show that the BCS ansatz yields a solution if the BCS equations

$$
\frac{\Delta}{V}=-\Delta \sum_{\mathbf{k}} \frac{\tanh \left(\xi_{\mathbf{k}} / 2 T\right)}{2 \xi_{\mathbf{k}}}, \quad \xi_{\mathbf{k}}^{2} \equiv \epsilon_{\mathbf{k}}^{2}+|\Delta|^{2}
$$

are fulfilled. What kind of interaction is needed to yield superconductivity?
Hint: The Fermi function fulfills the identity

$$
f(x)-f(-x)=2 f(x)-1=-\tanh (x / 2 T)
$$

d) Consider the superconducting phase where $|\Delta|>0$. Use b) to obtain from the poles of \mathbf{G}_{11} the single-particle density of states (DOS). Draw a sketch of the DOS and comment on the result.

7.2. Meissner effect

The London equations of superconductivity are

$$
\frac{\partial}{\partial t}(\Lambda \vec{j})=\vec{E} \quad \vec{\nabla} \times(\Lambda \vec{j})=-\vec{H} \quad \Lambda=\frac{m}{2 n_{s} e^{2}}
$$

Consider a thin superconducting slab of thickness d, infinitely extended in y and z direction, in a uniform, static magnetic field $\vec{H}_{0}=H_{0} \hat{e}_{z}$ parallel to the slab surface.
a) Use the Maxwell equations to calculate the magnetic field $\vec{H}(\vec{x})$ inside the slab. Show that the field enters the slab only on a length scale λ_{L} (London penetration depth). Draw the result.
b) Calculate also the current density inside the slab and draw the result.
c) Calculate the average magnetization of the slab,

$$
\langle H(x)\rangle=\frac{1}{d} \int_{-d / 2}^{d / 2} d x H(x)
$$

and draw it as a function of d.

Consider now a current flow through an infinitely long cylindrical superconducting wire of radius $R\left(R \gg \lambda_{L}\right)$.
d) Use the continuity equation to show that the current density distribution $\vec{j}(r)$ obeys a ordinary differential equation of the form (modified Bessel differential equation)

$$
x^{2} \frac{d^{2} j}{d x^{2}}+x \frac{d j}{d x}-x^{2} j=0
$$

Hint: Laplace operator in cylindrical coordinates

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

e) Draw the solution of d) (modified Bessel function of the first kind) and show that the current flows only in a small layer
 underneath the surface of the wire.
f) Use Biot-Savart's law to calculate the magnetic field outside the wire induced by the current. If the magnetic field at the surface exceeds a critical value H_{c}, the superconductivity will collapse. What is the corresponding critical current I_{c} ?

