
Universität Bonn 6.7.2009
Physikalisches Institut

Prof. Dr. H. Kroha, P. Henseler, T. Stollenwerk
http://www.thp.uni-bonn.de/kroha

Advanced Theoretical Condensed Matter Physics — SS09

Exercise 7

(Please return your solutions before Fr. 17.7.2009, 11h)

7.1. Derivation of BCS equations in Nambu-Gorkov formalism (15 points)

In this exercise, we will diagrammatically derive the BCS equations of supercon-
ductivy. For that purpose, we consider the Nambu-Gorkov Hamiltonian, which was
introduced in the lecture,
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As discussed in the lecture, within this formalism the propagator gets a matrix struc-
ture
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where the quantum expectation values 〈...〉 have to be taken with respect to the
ground state of the superconductor. The off-diagonal elements are called anoma-
lous propagators and become non-vanishing if a superconducting groundstate with a
spontaneously broken symmetry exists. Such a phase transition can never be obtained
within finite order perturbation theory, but one has to consider an infinite sum of di-
agrams. In our case, we restrict to the self-consistent Hartree-Fock approximation,
whose self-energy diagrams are

.

Here, the double lines shall indicate that the internal propagators are not the bare
ones as in usual perturbation theory, but the approximative full ones, defined via the
(matrix) Dyson equation
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The Feynman rules to calculate these diagrams differ only slightly from the usual
ones

• From the Nambu-Gorkov Hamiltonian we can read off that each interaction line
has to be multiplied with τ3 at each end.

• The sum over all internal quantum numbers yields that we have to take the
trace when evaluating a closed Fermi loop, tr{G(iω,k)τ3}.

a) Using the Feynman rules, derive the self-consistent equation for the self-energy
from the diagrams above. Show that only the Fock diagram contributes to the
off-diagonal elements of Σ.

b) To find a solution of the self-consistent equation we use the BCS mean-field
ansatz
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Use the definition of the full (matrix) Green’s function G(iω,k) as the resolvent

G = (iω1− HBCS)−1 !
= (G0(iω)−1 − Σ)−1

to obtain an ansatz for the self-energy matrix Σ.

c) Insert your ansatz for Σ into the self-consistent equation of a). Consider the
off-diagonal element Σ12 and show that the BCS ansatz yields a solution if the
BCS equations
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are fulfilled. What kind of interaction is needed to yield superconductivity?

Hint: The Fermi function fulfills the identity

f(x) − f(−x) = 2f(x) − 1 = −tanh(x/2T ).

d) Consider the superconducting phase where |∆| > 0. Use b) to obtain from the
poles of G11 the single-particle density of states (DOS). Draw a sketch of the
DOS and comment on the result.



7.2. Meissner effect (15 points)

The London equations of superconductivity are
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Consider a thin superconducting slab of thickness d, infinitely ex-
tended in y and z direction, in a uniform, static magnetic field
~H0 = H0 êz parallel to the slab surface.

a) Use the Maxwell equations to calculate the magnetic field ~H(~x)
inside the slab. Show that the field enters the slab only on a
length scale λL (London penetration depth). Draw the result.

b) Calculate also the current density inside the slab and draw the
result.

c) Calculate the average magnetization of the slab,
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and draw it as a function of d.

Consider now a current flow through an infinitely long cylindrical superconducting
wire of radius R (R ≫ λL).

d) Use the continuity equation to show that the current density
distribution ~j(r) obeys a ordinary differential equation of the
form (modified Bessel differential equation)
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Hint: Laplace operator in cylindrical coordinates
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e) Draw the solution of d) (modified Bessel function of the first

kind) and show that the current flows only in a small layer
underneath the surface of the wire.

f) Use Biot-Savart’s law to calculate the magnetic field outside
the wire induced by the current. If the magnetic field at the
surface exceeds a critical value Hc , the superconductivity will
collapse. What is the corresponding critical current Ic?


