Theoretische Festkörperphysik/ Theoretical Condensed Matter Physics

Instructor: H. Kroha

Lectures: Tue 13:15 - 14:00, Thu $09{:}15$ - 11:00 at HS I

Exercises: Fri 12:15 - 14:00, AVZ 22 (with T. Langenbruch), first exercise 25.04.2008

Certificates: Ungraded certificates will be assigned for attaining 50% of all possible homework points. For a graded certificate an oral exam at the end of the term is necessary.

Prerequisites: Quantum Mecanics I and II (second quantization)

Contents:

- 1. Quantum field theory at finite temperatures
 - Green's functions, correlation functions
 - Analytical properties: Matsubara technique
 - Relation to observable quantities (linear response theory)
 - Feynman diagrams and Wick's theorem
- 2. Landau Fermi liquid theory
 - Concept of continuity
 - Quasiparticle concept
 - Physical consequences: Fermi liquid relations
- 3. Basics of collective excitations
 - Phonons
 - Plasmons
- 4. Superconductivity
 - Concept of spontaneous symmetry breaking (Goldstone theorem, Higgs mechanism)
 - BCS theory
 - Mesoscopic superconductivity: penetration depth, superconductor-normal metal contacts: Andreev reflection
 - superconducting contacts: Josephson effects

- 5. Magnetism and strong correlations
 - Quantum mechanical origin of magnetism
 - Magnetic defects in metals: Kondo effect
 - Concept of renormalization group
 - Magnetic lattice systems:
 - Types of magnetic coupling
 - Hund's rule: FM
 - exchange, superexchange, AFM
 - Dipole: FM
 - RKKY: FM, AFM
 - Models: Heisenberg, Hubbard, t-J
- 6. Metal-insulator transition in strongly correlated systems
 - Hubbard model
 - Dynamical mean field theory (DMFT)

Important general concepts:

- Continuity: Quasiparticles
- Collective phenomena of many particles
- Spontaneous symmetry breaking: Discontinuity
- Renormalization: Strong correlations out of weak interactions

Literature:

- W. Nolting: Grundkurs Theoretische Physik 7: Viel-Teilchen-Theorie
- A. A. Abrikosov: Fundamentals of the Theory of Metals
- G. Mahan: Many Particle Physics
- A. Altland, B. Simons: Condensed Matter Field Theory
- M. Tinkham: Introduction to Superconductivity
- J. R. Schrieffer: Theory of Superconducivity
- A. Auerbach: Magnetism
- P. Fazekas: Lecture Notes on Electron Correlations and Magnetism
- F. Gebhard: The Mott Metal-Insulator transition