Chapter 3

Many-particle Quantum Systems

Many physical systems consist of a very large number of particles. Often, the

particle number is even variable:

e The relativistic formulation of quantum mechanics had led us to the concept
of particles and antiparticles. It had shown that the quantum mechanics of
a single particle is inconsistent in itself, because particle - antiparticle pairs

can be created in scattering processes.

e

Figure 3.1: Klein paradoxon

e Systems with extremely large particle numbers exist in condensed matter

systems, e.g. the electron system in metals (~ 10?3 particles!).

Fermi spher

Fermi sea
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Figure 3.2:

The particle number can be variable through the coupling to a reservoir

with particle exchange.

This calls for an efficient method to describe many-particle systems as well as
the creation and destruction of particles. This method will be provided by the

"Second quantization”,
Remark:

The combination of the many-particle formulation and of the relativistic formula-
tion of quantum mechanics will also lead to the understanding of the connection
between the spin of a particle species and the symmetry of the wave function

under particle exchange.

3.1 Second quantization

3.1.1 Many-particle states (wave functions)

The quantum state of a many-particle system (particle number N) is given by
specifying a complete set of quantum numbers (= set of eigenvalues of com-
muting observables) for all particles, e.g., in position representation the wave
function depending on the coordinates 7, ¥s,...,Zy (and spinoy, o9, ..., 0x) of

all N particles:

Uz, xy) N~ 10% (3.1)

x; = (&, t;,04,...)  collective coordinate (3.2)

Constructing a basis set for many-particle states:

e For an interacting system the Hamiltonian reads

N
H(zy . oay) =Y HY(x)+ Y H®(w;, 1)) (3.3)
i=1 (4,9),i#]
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single-particle H:

HY(z;) = T(z;) = —i—m— + U(%;) (3.4)
(e.g. kinetic energy, single-particle potential)
two-particle H:

H® (2, 5) = V(& — T)) = =——= (3.5)
(e.g. interaction potential between two particles)
If H? = 0 the eigenstates do, in general, not factorize into a product
of single-particle eigenstates. In this case, it is not possible to specify the

state of a single particle in the system alone.

Only if the system is non-interacting

H(zy...xy) = Ho(z ZHU ) (3.6)

the eigenstates can be written as a product of single-particle states:

H0|ozgk1),. ozg;N)) = E|agk1),...,a§5m>, where (3.7)
k k k k k
oL alYy = e el el (3.8)

(non-interacting) many-particle eigenstate with

N
HO(x)|o") = Blo™), E=)_E, (3.9)
i=1
|a§ki)> is the single-particle eigenstate of the i-th particle with quantum
numbers Oé( and eigenenergy F;.

Proof:
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Holay ...ay) = [ZH(”(:BZ-)] lag) .. Jay) (3.10)

= (HO(z1)|on)) |az) . . o) + |on) (3.11)
x (HO(x2)|02)) |as) - . o) + . .
+‘0‘1> Nan-1) (H(l)(xN)|aN))

= Z{Ial C(HWY (@) - aw) } (3.12)

- Z{\al (Eile)) o)} (3.13)

= ( ) lag) ... Jan) (3.14)

For a non-interacting system, the single-particle energies are additive. This

is in general not true for interacting systems.

Identical particles:

Quantum mechanical particles (of the same species) are indistinguishable. This

introduces another constraint on the form of the state (wave function):
[t must have definite parity P = 41 with respect to the interchange of 2 particles:

= +[alf ...a(.kj)...ozgki)...aﬁf’v)) Vi, j
(3.15)

agki) is the quantum number of the i-th particle

The state of a non-interacting many-particle system can be written as

k1) k g, g, ! k
0) = o)) = (et anPali) el | (3.16)
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The sum runs over all permutations of 1,2,3,...,N. -+ is for bosons and -
for fermions. For fermions the totally antisymmetry sum of products of single-

particle states can be written as a determinant (Slater determinant):

k k k
[ 1™ el el
=] _ (3.17)
: K k k
o) o) o lal)
Fermions: 'Total antisymmetry of state =
Any single-particle state a®)can be at most singly occupied.
Proof:
|1/1)|oz§k1) . .ozgk) . .oz§k> alk)) o |0z§k1) oz§k> : .ozgk) alkn)y
S 0l oo )y
=) = 0
O

The i-th and j-th particle have the same upper index because they are in the same
state a'k). In (%) we have used the antisymmetry of fermions and in (x#) we could

exchange ¢ «<» j because they map onto the same state.
Basis set of the many-particle Hilbert space:

Since BM) = |a(k)>’k‘ =1,2,...1is a complete basis of the single-particle Hilbert
space, the set of states with definite parity

B™M = o oSNk =12 i=1,... N (3.18)

is a complete basis of the N-particle Hilbert space.

— Any N-particle state (e.g. eigenstate of an interacting system) can be written

as a linear combination of the |agk1) . .ag\lfN))’s.
In real systems, the total particle number N can be variable.

Definition:
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The Hilbert space of all states with particle number N = 0,1,2,... spanned
by the basis set

|Oé§k1)a§\1;N)> kz:1>2avl:1>>NaN:071727 (319)

is called Fock space.

3.1.2 Particle number representation: Creation and de-

struction operators

In |a§k1) . .ag\?”)) each basis state is specified by specifying for each particle

i=1,...,N the state a®) it is in. Alternatively, each basis state can be speci-
fied by giving, for each single-particle state o the occupation number ny, of that

state, i.e. the number of particles which are in that state.

Particle number representation:

1. Choose a basis of single-particle states, e.g. momentum eigenstates |E)

2. A basis state (not necessarily eigenstate of an interacting system) if the
N-particle system is specified uniquely by giving the occupation numbers

ng, k=1,2,... for each single-particle state.

3. In this way the occupation numbers n; and the total particle number N =
> . ny are introduced as new quantum numbers of the system. They specify
a many-particle basis state uniquely, once the underlying single-particle

basis has been chosen.

|a§k1)...a§\1;N)> = |nk1ank2a"'>nki"“> (320)

The orthonormality of the N-particle basis sates follows from the orthonormality

of the single-particle basis states:
(mimg ..My ... |nang ...k ..) = Omyny " Omong - - - = H Ormpny, (3.21)
k=1

Shorthand notation:

k=1,2,3,... labels the single-particle eigenstates.
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Creation and destruction operators

It is useful to introduce operators which reduce or increase the new quantum

numbers n; by one unit.

1. Bosons:

(a)

Definition:

apl oy = el (e — 1)) (3.22)

Definition of the destruction operator ay,.

The prefactor fj in the action of a; has to fulfill the condition that
ag|...ny =0...) = 0. Hence, it is defined as fi := /nx. The square
root is chosen for convenience (see below) and in analogy to the de-

struction operator for the harmonic oscillator.

Creation and particle number operators:

To find the action of the the hermitean conjugate operator a,Tg, we

consider (n; not bounded from above)

Wlor) = (.ong..alag] .. ong. ) (3.24)

= VR =m (3.25)

Orthonormality =

alag|...ng.. ) oc | ng ) (3.26)

with eigenvalue ny:

alag) . omg. ) =gl .ong )

np = alak particle number operator in single-particle state k

ng > 0, integer
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It follows, in particular, that the eigenvalue spectrum of azak is posi-

tive semidefinite, N.
(c)
alag] .. .ne..) = Vmgal]...(ng—1)...) (3.27)

=all...(n—1)..) = Vmg|...ng...) or ng—1{3.29)

The square root of ny is specific for bosons.

az\nk>:vnk+1\(nk+1))

aL is the creation operator for a particle in single-particle state k.

(d) Commutation relations for a, al:

= (np+1)|...ng...) (3.31)
aLak|...nk...) = ngl...ng...) Vg (3.32)
& qay —aja, = 1 (3.33)
Similarly:
[ak,az] = 1
[ak,aL,] 0 W=k (3.34)
lag,ap] = 0 vk, K

2. Fermions:

In addition, the occupation number is limited to not more than 1. This
has profound consequences for the action of a' (not for a;) and hence for

the commutation relations.

(a) Definition:

Celna ..y =nglng . (np — 1)) (3.35)

n,=0,1 (at most single occupation of state k)
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As for bosons, the prefactor ny is chosen such that a; annihilates
the states with ny = 0. Since ny = 0,1 only, the square root can be

omitted here.

Action of CLZ

ok = el ..onp...) ( )

= ng|...(ng—1)...) (3.37)

(Prlor) = <nk|czck\nk> ( )
(3.39)

= ni=mny (ng =0,1)

T _
ny = chk
particle number operator with positive

semidefinite eigenvalue spectrum (0,1)

(¢) Orthonormality

chel . cong. ) = mpec| (e —1)..) (3.40)
X Ng| . Mg (3.41)
=cll...nfp..) = fil onf 1) (3.42)
where
1 ny, =0
= 3.43
Ji {O nj, =1 (no double occupancy!) (3:43)
Al e Y= =n)|...(g+1)..), ng=0,1 | (344)
.I>

¢, 1s creation operator for particle in state k.
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(d) Commutation relations

el oone.) = (L) —ng)|.ong. )
= (I—=nd|...ng...)
TLk—Ol
(1—nk)| ng .. >,
ckcz + chk = 1
CrCp = 0
ced =0 (sinceng = 0, 1 only)

Antisymmetry of state wrt. interchange of particles

CHAPTER 3. MANY-PARTICLE QUANTUM SYSTEMS

CrCrr = —Cp/Cp 352)
acl, = —c.a (3.53)
{ep,cl} = 1
{erewy = {cch}=0 k¥ (3-54)
{ce,ch} = 0 k # K
3.1.3 Momentum and position representation: field opera-
tors
Let {|k)} be the single-particle momentum basis (Z|k) = (267:;5/2.
i
Qg As- . . b S
F # & destruction/ creation operators for OSOTIS
Cps Cr fermions
We define the Fourier transform of aj as
(7 &’k ik
—~ Bk -
T2y — T —ikd@
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Action of @E(:It’) on an N-particle position eigenstate

T0. . Gn) = /d3k1.../d3kN k.. k) (3.57)
——

ki each one singly occupied

X </Zl.../ZN\gl...gNZ

N - -
1 —ik1 Y —ikNT
((27\')3/2) e 1Y1...e NYN

TN = N d?’k d?’kl dgl{:N iR —ik i
w('r)‘yl .. yN> = / (277')3/2 / (27‘(‘)3/2 . /We e 191 (358)
e BNIN B )
———

=520, O3 (k=R R )

Yo &Pk, &Pk,
_ Z(2w)3/2/(27r)3/2"'/W"' (3.59)

otk ik j—w)_._e—ZkNyN‘kl...%...kN>

* ] @n)pre
= Dl 08T 5) (3.60)

Hence, Q//J\(f) is the destruction operator for a particle at position Z. "Field oper-

ator”

Since @(f) is analogous to the wave function but appears in particle number
representation as an operator, this representation is also called 2nd quantization.
From the definition of v,4" (linear relation to a,a') it follows that ¢, 9" obey

the same commutation relations as a, a.

3.1.4 2nd quantized representation of operators

An operator can be given in the occupation number representation by calculating

its matrix elements in the occupation number basis {|ny,...,ng,...)}.

1. Single-particle operators:

N
HY =" HW(x) (3.61)
=1
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H® acting on |nq,...,ng,...) can at most change the state |a*)) of any
one of the N particles (but not the states of two or more particles), since
each term in H" depends only on a single coordinate.

Hence, the matrix elements of H™) in the occupation number representation

are of the form

[H(l)}m_&nr}—é = <n1,...,ni—é,...,nj—i—é,...\H(1)|n1,...,ni,...,nj,...)

M5,M 5
(3.62)

here § 0 for diagonal elements (no change of occupation numbers)
where § =
0 = +1 for off-diagonal elements

and 7, 7 arbitrary. n; is the occupation number of a single-particle in the

state 7.
[ H(”}ZZ’W (3.63)
S 0,0l H O (3.64
;:|1a§k1), o ,al(i), . alkn)

= (aVHY (2)]a®D) /515 (3.65)
_ / 1 6D (@) HO(2)6) (2) /iy (3.66)

.

(1)
H;

= H v/ (3.67)

with ¢ (Z) = (F|a®).

rHO can, hence, be written in oc-

7

With the definition of ai,aj or ¢;,c

cupation number representation

_ )
HY = ZHﬂ a}ai
is (3.68)
1 _ 3 ) (Vv (L) (2 40 (2
1Y = [ @edi@yHO @60 @)

and similar for fermions: a; — ¢;, a;r — czT
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2. Two-particle operators:

Z H®(z;,2;) (3.69)

(4,9),i7#7

H® acting on a many-particle product state can change the states of at
most 2 particles, i.e. in occupation number representation, it can change,

at most, the occupation numbers of 2 different single-particle states.

One obtains, in analogy to H®:

2 _
H = zk lm i akal am

iklm

HY, = / i / B $O(T) $ () HO (7, 7)o (&)™ (@)

(3.70)
3. Particle density operator:
p(E) = I (D)w(D) (3.71)
Proof: Total particle number:
N = / Pt (Z)0(D) (3.72)
= /d3 / &k / K a%ag,e_i(’g_’?ﬁ (3.73)
= / (;l:;ga%a,;, (3.74)

&Ph
_ /W”’“ (3.75)

where we have used [ d3z e "FF)% — §3(F — ') . (2rr)®.

General rule to calculate operator A in 2nd quantization representation:
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e Take expectation value of operator
) = [ Ert@av (3.76)

o Replace (&) — §(¥) and ¢*(7) — ¢1(Z)

e Equations of motion of creation/ destruction operator in Heisenberg

picture:
H = Y ealag (3.77)
7
ih%a,; = |ag, H] = eza; (3.78)
ap = ag(0)e ! 3.79)
dl = dl(0)e (3.80)

3.2 The spin-statistics theorem

In chapter 1 we had seen that the relativistic formulation of quantum mechanics

necessarily leads to

1. an eigenvalue spectrum of the energy which is not bounded from below
(negative energy eigenvalues E for free particles). The £ < 0 solutions can-
not be discarded, because they appear necessarily as parts of the solutions

of physical problems:
e relativistic scattering (Klein paradoxon)

e (Gaussian) wave packet of finite temporal extension

e — no stable ground state

2. a many-particle theory through the creation of particle-antiparticle pairs.

Therefore, relativistic single-particle quantum mechanics is inconsistent in itself.
(The stability problem was partially solved by the concept of the Dirac sea for
spin—% particles, but not for particles with integer spin.) In section 3.1 we had

developed efficient techniques to treat many-particle systems with even variable
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number of particles: field theory

The fact that quantum mechanical particles are indistinguishable had implied
a definite parity £1 of the state wrt. interchange of particles, i.e. commuta-
tion/anticommutation rules for creation/destruction operators.

In this section we will see that both of the inconsistencies above are remedied by
combining the relativistic theory with the many-body description, i.e. by a field
theoretic description of relativistic quantum mechanics.

This will at the same time lead to a definite relation between the spin of a parti-
cle (integer or half-integer) and the parity of its many-body wave function under
particle interchange (— statistics).

We will restrict ourselves to the explicit treatment of spin-0 and spin-1/2 particles,
although a general group theoretic treatment, based on the different behavior of

integer /half-integer spin particles under Lorentz transformations is possible.
1. Spin-0 particles

The Klein-Gordon equation

((ihe)* 9,0" —(mc*)*)y(x) = 0 (3.81)
——

92 o2
a(ct)? v

implies the continuity equation

95" = 0, — 204 V.7=0 (3.82)

) ¢) — (3.83)

2
7= U)e) =) =-G) (B89
o= 5 (7 () - () ) (3.85)

Since ih% is the energy operator, j° had been interpreted in a prelimi-

with

nary way as an energy density. This assumes implicitly that ¢*(z)¢(z)
has the dimension of a particle density, as in the non-relativistic case (i.e.
[ &*x4p*yp =particle number, dimensionless). However, this interpretation

is inconsistent, because:
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e j is not positive definite: negative energies?

e The interpretation of ¢*(x)y(z) as a particle density is not relativis-
tically covariant, because, by this interpretation, the particle number
N = [d*zy*(z)(x) is not relativistically invariant (as it should!)

(only the 3-dimensional integral).

— How should we define the field amplitude to obtain a relativistically in-

variant particle number?

The quantity N = [ d*z¢*(z)y(z) is explicitly invariant, where

d*k :
_ Ee*z . /N(k 3.86
0w = [ e /N E) (3.56)
and /N (k) is a normalization factor for plane wave states determined
below. N = [ d*zv*y is written as a 3-dimensional integral over a density

by observing that the plane wave states must obey the relativistic dispersion

E? = p+ (mc?)? or (3.87)
02 g2 mey?
(K02 = & +( h) (3.88)

€

el

BN
I
7 N
T e
w
0]
Nej
N

Hence:

- [ |
/ /d4k/d3k’

(K" — 2)5(|K] — [F)e ®em® 5507 — &)

= o (S(KO ) +6(O+e )

lez|

3 d’k dgk/ o FE R ES(1E _ L 1
/d / / R ES(E| - k \)(%)2‘6%‘ (3.93)
X[ (k, Ek)@/)(k‘ &) +w (k, —eg) (K, —ep)] (3.94)
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= A relativistically covariant density is obtained, if we define the plane
11

2e- VV '

wave amplitudes with the normalization factor

3

ke (3.95)

5-
??‘(?)D

However, then | (z)|* does not have dimension of a particle density any
longer, and j° does not have dimension of an energy density.

Therefore, a rigorous definition of the energy density is needed. It will also
lead to the correct interpretation of j*.

In classical mechanics the energy is obtained as the Hamilton function from
the Lagrange and Hamilton formalism. These need to be generalized to field
theory now.

Lagrange and Hamilton formalism in relativistic field theory: generalization

to infinite number of degrees of freedom.
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Classical mechanics Field theory

Lagrange formalism

e parameter of the motion

. . ct
time t coordinates x =

—

T
e variables
Z(t), Z(t), trajectory Y (z) field amplitude, complex
(=coordinate of the field ¢ at each
parameter value x)
e Lagrange function Lagrange density
L =T(#) - V(&,7) L(,52:0) =T (. 52:0) =V (¢, 5%:0)
The relativistic covariance requires that
L is function of derivatives wrt.
all 4 coordinates

e Action principle

= J,; dt L(z(1), (1)) §=[17 d'w L (V(2), v (@)
55 =0 05 =0
e Fuler-Lagrange equation for ¥
4oL _ L _ 0 oL OL _
dt dz oF Oxh 3(3%:) o

(and similar for ¢*)

Hamiltonian formalism
e variables

coordinates and canonical momenta

e Hamilton function Energy momentum tensor
S o op*
H=# p-L TH, = ZE01 — 64 L (1, £2)

The TY component is the energy density

We now apply the Lagrange formalism to the Klein-Gordon theory in order

to obtain the rigorous expression for the energy density:

The free Klein-Gordon equation is obtained as the Euler-Lagrange equa-
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tion of motion from the Lagrange density defined as

0
£ (w, @w) = 0" 0" — m*yy

(sum convention and ¢ = 1)
Proof:

oL

G
oL

0(5)

OxH

o _or
0270 (357)

= M

= 0,0"

In Euler-Lagrange:
= 0,0" + m*p =0 Klein-Gordon equation

From £ we obtain now the correct energy density as:

Canonical momentum: [1*(z) = a(aaﬁp*) = 0"

Th, = 20,479 — 0, ((0a0")(0™Y) — m*P )
T = 20,000 — g (Detl* 0% — m>p*1))
T = T% :Too
a . 0 =\ (S 2,1
= (5en”) (e + o1 e mivy
%

ow = 112 20,112
o0 | T IVer+mil

positive definite

129

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)
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Energy density of a plane wave:

11
_ i(kZ—ezt)
_ 1 ilki—eg 3.106
Y N (3.106)
e = (R+md)YV?2, c=h=1 (3.107)
1 2, 7 2}
_ 2 1
T = 3 [5k+k +2 m (3.108)
%
- %’f (3.109)

Formulation of the Klein-Gordon theory for many-particle sys-

tems

Any (single-particle) wave function ¢(z) can be developed into momentum

eigenstates
Bk 1 [y 4k =) (g i
() = / — [aﬂ (t)e™ ™ + a7 (t)et™ (3.110)
(27T)3 /2€E k k
()

where the coefficients 513 (t) have time dependence according to £ > 0 and

E < 0 solutions, respectively:
~(+ + ie-
) (t) = alDeTier (h=c=1) (3.111)

with e = hwp = + P2+ m?,

o) giFa—egt) | al(g—>e+i(ﬁf+a,;t>] . (3.112)

v = [ G é?k ot

The second term has t-dependence like a state with negative energy.

The stability problem is ultimately cured by the interpretation that each

wave function ~ e “kT—cgt)

with negative energy —e; = —hw; corresponds
to this k-state being unoccupied, and thus having more energy than in the

occupied state (which is no wave function present, i.e. the vacuum state).

The concept of occupancy of a state is conveniently formulated in terms

of creation /annihilation operators:

From the rules of 2nd quantization, the energy operator of the Klein-Gordon
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theory is obtained from the energy expectation value (E) = [ d*x Ty by
replacing the wave function ¢(z) with the field operator @(g)

U(z) — da) (3.113)
Vi) — ¥i2) (3.114)

(in the following, the tilde will be omitted).

H = /d%ﬁ)o (3.115)

= [ [0+ 1oP + mlur] (3.110

has the dimension of energy with

P(zx) = / (;er];g\/% [a](;) exp (Z(Ef— 5,;15)) + a]%_) exp (—z’(—E:Z*— 5Et)>]

(3.117)

The destruction of a particle in state (—I—E, —¢j) is interpreted as the
creation of a particle in state —k with positive energy: (—E, +¢1), relative

to the vacuum (where the £ state is occupied).

)
)

destruction (

bl

—i—E, —€ creation (—IZ, ) = antiparticle creation
+k, —e k

creation ( destruction (—k, ;)

Lo

Therefore, we replace the annihilator of a £ < 0 (free) particle a](;_) by a

creation operator a](%._) = b(_J%) (and drop the ) in a](_;r)).

d’k (Ri—ept) L (1) i(—FTteg
W(z) = / 27 Jage FE5) 4yt (3.118)
so that all terms in t(z) have the correct time dependence for creation/
annihilation of a £ > 0 particle, respectively.

Destruction of particle at £ has component of destruction and antiparticle

creation (as seen before for strongly localized wave functions Az < Ao =

h
o)
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With this definition of the field operators ¢ (x), ¥ (x) calculate the energy

operator:
&k [ PR 1 | o
/ & / / [zgka(ﬁ —ikT—eg) —z’gl;b_,;e—“—%ﬂﬁ@b
2m)3 2\/71 [EF
—iegage” (E )+zsk,b(2),e( k/“ak’t)] (3.120
+ [—ika o) e~ FFex) 4 b e ’““H)} (3.121
X -z'k'a];,e“(k et — b el “%/ﬂ] (3.122
+m2 |:a,l(;+) z(k:c aﬂt _I_ b kx+a~t)] (3123
% [ak 6+Z(kx ak,t +b(_k/ k’x+£k,t):| (3124

- / (ZZ%/ (if) ;\Fbﬁ

[5 +E4+m } {a(f)ak,e iler—er)t 53 (k —
H,_/ k

+b_pb™) e e e () — k’)(27r)3}

— [a% — k2 + m2] { P eiertsnt g3 + 1) (2m)?

Fagbpe ERERIG3 (k4 /Z/)(zw)?’}]

Pk , ,
= / o ) <al(;+ ap+0b_ b( ) + €5, [ao b(+ e =0’ 4 aoboe_%l?:ot]
7r

~ Ak
= H = /(2W)35k<a(fak+bb )

The factors e Citw) 53k + ') vanish after [ df except for k = k' = 0

(Bose-Einstein condensation only).

His positive definite exactly if b, b*) obey commutation rules of bosons:

(b, b =1 (3.125)
- Bk
H:/(27T> s <aﬂ ap + bt bﬂ+1) (3.126)
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The 1 can be neglected because oo energy of occupied F < 0 states in the
vacuum. The term a](;)a,; is the particle and the term b](;)b,; is the antipar-

ticle number in state k (= constant shift of energy zero point).

Stability demands:

Spin-0 particles obey Bose commutation rules 5
[C?E, 65’] = 51;,1;” etc. (3 7)
Analogous:
d3k
0 _ (+) +)
§° = / 2ny (o ag — b7 by — \1/) (3.128)
(*)

* oo particle number from occupied states
(%)

2. Spin-; particles
We have the same decomposition of the field operators:

A3k - - - e
Volz) = / P g pulF, ) e 4 dN) o(Fo)et R (3.129)

Yl (x) analogous.

However, the energy is calculated from the Dirac Hamilton operator:

~ 2 _‘-/:‘
H:co?-ﬁ+ﬁmc2:< me_ee 2) (3.130)
co-p —mc
_ | B t ~ 0
(B)= [ &z ) vix) Hio(z), p=—ih—  (3.131)
= ~—— ox

Dirac spinors
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With:

u(k,|) = . E > 0 spinors

v(k,]) = Ep+m E < 0 spinors

u

H (E,U)ei’gﬂ
H[U(E,U)eiﬂﬂ = —¢5 U(E,a)eigﬂ}
£p

Hence, we obtain for spin—% particles in 2nd quantization:

~ 3
= / (%3 > By (e e, —dp dl)) + 0 (Dd), de) - (3.152)

(The terms c]i+)dl(;+; and dj _c;  will vanish, since no double occupancy.)

i
H positive definite exactly if d, d*) obey anticommutation rules:

{dird} =1 (3.133)

i d*k ) (+)
"= (27)3 > Ey (sz,g o T g 7o — 1) (3.134)
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Stability:

Spin—% particles obey Fermi anticommutation rules

3.135
{CE o’ Cl(;—/l—l./} = 5];]%'/50'0" etc. ( )
General:
integer spin: bosons

) ) ) Spin-statistics theorem (3.136)
half-integer spin:  fermions

Follows, because any integer spin particle can be composed of spin-0 and an
even number of spin—% particles, and because any half-integer spin particle

can be composed of spin-0 and an odd number of spin—% particles.

3.3 U(1) gauge symmetry and particle number con-

servation

In the QM T course if had been discussed that the invariance under (global) U(1)
phase transformations implies the particle number conservation. Specifically, it
had been shown that the continuity equation is valid, if ¢ and 1* obey equations
of motion (Schrodinger equations) which are complex conjugate to each other
(which is only true for a U(1) symmetric system).

The relation between particle number and phase can be made more explicit by
means of the 2nd quantized formalism.

We consider the many-body state in "product state representation" (i.e. specify-
ing the state of each particle):

1/2
nkllnkz! .. ) /

k1 k
|¢<ak1,ak2,...,am>>N=< e D ED api) - laplyy) (3.137)

P

U(1) gauge transformation transforms each single-particle state as
Ulp): o™ — et#[al™) (3.138)

Since the N particles are indistinguishable, each single-particle state in |¢) trans-
forms under U with the same phase factor.

This means

Ulp):  |¢)n — e"™N|g)y (3.139)
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or for an arbitrary number of particles:

Ulp):  [6(0)) — e Ny = |o(¢)) () (3.140)

where N is the particle number operator.

o~

N is the generator of U(1) (3.141)

Commutation relation:

Expressing N in "product state representation:

Taylor expansion 1 dk qb
o(ag)) LI g 3.142
w4 le=o
= ME(p=0) (3.143)
iNp(—iL
= R =0) (3.144)
Comparing with (*) implies:
N = —i%,  =phase (3.145)

Phase and particle number are conjugate operators, analogous to position 7 and

momentum —iﬁa%. It follows, in analogy:

o, N] =i (3.146)

Particle number conservation:
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Since N is the generator of the Lie group U(1) it is conserved, if the Hamil-

tonian is U(1) invariant.
Proof:

U(1)-invariance:
eV He—ieN — [ (3.147)

For infinitesimal ¢:

H = ewﬁHe_wﬁ
= (1+ipN)H(1 —ipN)
= H+ip[N, H]
S [N,H] = 0

Heisenberg equation of motion:

zh%ﬁ =[N,H] =0, N conserved (3.148)

Measurability of phase and particle number:

Since @, and N do not commute, they cannot be measured simultaneously with
arbitrary precision. We have the uncertainty relation (analogous to & — p’ uncer-

tainty):

ApAN <L (3.149)

Consequences of the discreteness of the spectrum of N:

In contrast to p, the spectrum of N is discrete, N =1,2,3,.. ..

Although the commutation relation (3.56) has been proven in "product state rep-
resentation", it must be valid in any representation.

In particular, in particle number representation, Nis diagonal with discrete eigen-
values N = 1,2,3.... In order to obey the commutation relation (3.56), the phase

operator must be in particle number representation:

P =+i N = particle number (3.150)

dN’
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d

The derivative 5% is meaningful only when N > 1:

df fIN+1) — f(N) _ [f(N+1) = f(N)]/N
AN Nowo (N+1)—-N 1/N (3.151)

For a state with small particle number N & 1, the phase ¢ = iﬁ not only cannot

be measured precisely, but is not even defined.

Interpretation:

1 i(kE—-wt)
A plane wave state NI

with fixed phase is normalized to oo (or a fi-
nite density), i.e. contains always an infinite particle number.

A state with a finite particle number, normalized to a finite number, must be
localized in space and for time, i.e., by Fourier decomposition, does not have a

well-defined phase.

Figure 3.3:

These properties play a role in systems with many coherent particles in one state

(lasers, Bose condensates).
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3.4 Perturbation theory for many-particle systems:
Green’s functions and Feynman diagram tech-

niques

3.4.1 Schrédinger, Heisenberg and interaction pictures (re-

minder)

Schrodinger picture

e Operators g, H time independent

e State |1(t)) time dependent

o ihglo(t)) = H|o(t)) |
Formal solution:  |p(t)) = e~ #H¢(0))

e Expectation value: . .
(A) = (6(1)]| Alo(1)) = (9(0)| ¢h ™ Ae” i |$(0))

Ap(t)

Heisenberg picture The time dependence of an expectation value (A) can be cast

from |¢(t)) into a time dependence of the operator A:
o Ay(t) = enft Ae=#H'  Heisenberg operator
e |p)y = |p(t =0)) Heisenberg state, time independent

e From its definition, the Heisenberg operator obeys the equation of motion

ihtAy(t) = —Hei Aem it + en ' Ae=n ' H + ihen 92 e=n !
The derivative % occurs only if A has explicit time dependence in Schrodinger

picture, i.e. t-dependent potential.

ihd Ay (t) = [Ag(t), H] + in2p0 (3.152)

In particular:

d 0 in general
—H —_ — —
at " ot

Same t-dependence of H in Schrédinger and Heisenberg picture.

0 (3.153)
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Interaction picture

H = Hy+ Hiy (solution of Hy known) (3.154)

We propagate the Schrodinger state |4(t)) back in time to t = 0 according to the

non-interacting Hamiltonian.

Interaction state:

[@(1))1 = et (1))

e |o(t)); obeys the equation of motion
. d i
ih= |9(t)r = —Ho|@¥7 + 7™ (H5 + Hiu)|6(t)) (3.155)
ih|p(t))r = eF 0! Hyyye™ £10% ) (3.156)

Expectation value of any operator A

(A) = ()| Alg(1)) = 1(d(t)] ¢t Ae i (1)

A

- i -~ i
o A;(t) = entlot A=y Hot
Interaction picture:

1. Operators have time dependence like Heisenberg operators with respect to
the non-interacting system Hy, i.e. their time dependence is assumed to be
known.

. i _i
In particular:  Hiy 1 (t) = en0t Hy e n ot

2. The states obey a Schrodinger equation wrt. the interaction Hamiltonian
(in interaction picture) Hiy ((t) only (assumed: no explicit t-dependence
of Hin):
ih|p)r = Hing1(t)|dr)

The advantage of the interaction picture is that effects of Hy and Hj,; are seper-
ated, and that, hence, the motion of the operators is known. These pictures are
readily applied to the operators of 2nd quantization, where the known motion of

(2, t) will be extensively exploited for many-body perturbation theory.
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3.4.2 The Green’s function (definition)

We define the retarded (R) and advanced (A) Green’s function as the expectation

values (using the Heisenberg picture for the operators and the states):

Goo(,2') = =it —')([¢oo(2), ¥ (2')]5) (3.157)
G (w,a') = +if(t — ) ([tr, 05 (2)]5) (3.158)
where the commutator [...,...]_ is for bosons and the anticommutator [...,...];+
is for fermions. From now on, we will only consider fermions: [...,...]4 =

()

e The expectation value (...) = g(t¢gl|...[1ho)n is understood to be taken
wrt. the Heisenberg ground state. Since all the time dependence is in the

operators, we can use the short-hand notation (...).

e 0,0’ denote the spin projection o, = %1 or any other, additional quantum

number of a particle.
Note:

In the Heisenberg picture, the field operators v, do not, in general, obey

. . . i i gy .
canonical permutation relations because of the factors e*#! eF##"  Canonical

relations hold only for ¢t = ¢'.

For the purpose perturbation theory, we also define the time-ordered Green’s

function:
Goor (2, 2') = —i{Ttg (x) ], (2')) (3.159)
with

Yo ()Yl (), t>t

’ (3.160)
T (@) (2), <t

T ()], () = {

+ is for bosons and - for fermions. The case t = ¢’ requires special treatment, see

below.
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Importance of G(x,z'):

From G the ground state expectation value of any single-particle operator F'()

can be calculated:
FO = [ @i (a) 0@ (3.161)

(Heisenberg picture: 1(z) = e i) (Z)e 1t etc.)

(FO)orr = [ E2lul @) /@ (2)
— [ O@L )

[fW(&)] is the diagonal matrix element of f1)(¥) in & representation.

(FM) o = +i [ dBx hmfjfo [fO(D)]G(x, ") (3.162)
Examples:
Particle density: fO(F) =

ne(x) = +i hmfl:tfo G(x,x") (3.163)

Particle current density:

ho- -

7= 0= 5= (Vs=Va)

Vi acting to the right, Vi acting to the left

[ E5her = siben [ B2l Fe(o) - oha) vl

=) =

T —x
t! —t4+0

= :I:—/d?’:c lim Vf—ﬁf/)Go—o—(.f',I’/)(so—o—/

(o) = £5- lim oz (Vi — Vi) Goo(z,2') (3.164)
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3.4.3 The free Green’s function: equations of motion

We first derive the equations of motion for the free Green’s function in momen-
tum space. This will establish the connection between the (free) Green’s function
defined for many-particle systems and the Green’s function defined as a resolvent

operator of a differential equation.

"Free" Hamilton operator (=single-particle operator):

Hy=Y epeler, (3.165)
Fo

Remark:

k is understood to be the momentum index here, but could be any quantum
number in which the single-particle system is diagonal, e.g. [, m for an electron
in a H-atom (— e-e interaction as perturbation).

Fermions:

Many-body ground state:  Fermi sea

|0> = |nE1T7 n];fllv n[}'ﬂv nEQla .- > (3166)
k| <
with ny = L, |]f.| < Ky kr =Fermi momentum
’ 07 |k| > kF

Short-hand notation:

10) = 2cspo0 Mistpo = 0) (3.167)

(Note: Efficiency of writing many-body state in occupation number representa-

tion.)

Equations of motion for the creation/ destruction operators:



144 CHAPTER 3. MANY-PARTICLE QUANTUM SYSTEMS

0
’LEIECEJ = [CEJ, Ho]
. N Z (+)
feI‘mIOIlS I:CE,U7 HO] — 8]{)/ <Ck) O’Cﬂ Ck), ; CE’ /Ck‘/,O'ICEI,UI
. + . . = (+) .. .
= Z 5k'( * o0 RS o +5kk/500’ck/,a/ = % o R0 TR
k/ , W—/
5415 0
_ —ient
C,;’o(t) = e "k
(+) o 4ient
CEU(t) = e nk
0
zhacﬂg = €iC,
0 +)
zhat re = i (h=1 below)
Res

Equations of motion for G4, G:

z%GR (t,t) = za {—29 —t') <(Cka Z ) F c%g(t')c,;g(t)>>}
- 5(t—t)+5k 2 t,t)

(
(e, 0k () F ek (#)eg, (1) )}

(1.1)
i Gt = i L0~ ) (e (06 (1)) + (<000 — 1) (el Ve, )}

lo}

= {att =) (g, (O (1)) F ot = ¢) (b (#)eg, (1)) } + G, (1)
= d(t—t)+eGp, (t—1t)

a A
i GL(LE) = i {+19t—

t)
= §(t—t) +e;Go

(15 —eg] G e —1) = ot — 1) (3.168)

e Retarded, advanced, and t-ordered Green’s functions have all the same

equation of motion.

e The solutions for R,A, t-ordered functions are determined by the different

boundary conditions for ¢ — 4o00.
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e For the free system (Hj is single-particle operator) the equation of motion,
and hence the Green’s function, coincide with the those familiar as the
resolvent functions of a single-particle differential equation (or from elec-
trodynamics). For many-particle systems our definition of G will give a

generalization with decisive advantages.

Free Green’s functions in frequency space:

In Fourier transforming wrt. time we have to observe the different boundary
conditions for G®, G4, G:

Y

t-t
Figure 3.4:

0
i— —ep| GE(t—t)=0(t—t) (3.169)
ot N
~O(t—t")
Now we multiply this equation by fj;o dt et @+t The infinitesimal factor n > 0

makes the integral converge for ¢ — oco. The partial integration over the first
factor on the left hand side (0/0t) leads to w.

o (w—er+inGE(w) = 1
[z'g — s,;] Gi(t—t) = o(t—1t)
~O(t'—1)

Again we multiply this equation by fjozo dtet"@=mt and for n > 0 this

integral also converges for ¢t — —oo.

\
T

Figure 3.5:
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o [w—ep— in]Gga(w) =1

e t-ordered Green’s function:

[i5 = ex] G, (t =) =3t =)

Jdtet @ mt k[ > kp  (contribution: g, cl

"O'
[ dt etite—imt k| < kg (contribution: ¢! ;.
ko ko

<z% — 5,;+in) G, (w) = 1, k| > kp

0 : -
(Za —€&p — zn) Gp,(w) = 1, k| < kg

1

R/A

W) = ——
w—egEin

O1F| — kr) Ok — |F)

w—ggtm w—ep—1in
1

w — e+ isgn(|k| — kp)n

3.4.4 General form of the interacting Green’s function: spec-

tral representation and analytic properties

We now derive and analyze the general form of the Green’s function in frequency
space.

The ground states of a system of fermions (=Fermi sea) and of bosons (=bose
condensate) with fixed, large particle number are fundamentally different, which
implies that also the calculations are different. We will restrict ourselves to the

case of fermions with spin 1/2 (electrons) from now on.

Fermi sea:

We consider an electron system in a large but finite volume V = L3.
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\Y

Figure 3.6:

The momentum eigenvalues of the free system are the n quantized:

. 2T, - ~
p= hf (ng€y + nyey + n.e,), Ngy.=0,£1,£2, ... (3.170)
Each momentum eigenstate occupies a volume @ in momentum space.

In the non-interacting ground state, these momentum eigenstates are doubly
occupied up to a maximum energy, the Fermi energy Ep, defined such that the
total number of occupied single-particle states |p) o) is equal to the total number

of particles N. This antisymmetrized N-particle state is called Fermi sea.

APy

AN N ThEv

.............. .. Fermi sea

............... g -— pX

Fermi spher:

Fermi surface
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Figure 3.7:

[90) = [Mp<pr = 1, Npzpp = 0) (3.171)
The modulus of the maximum momentum of an occupied single-particle state is
called Fermi momentum:
P
Ep = ﬁ (3.172)
Since the p are quantized, all momentum sums can be considered discrete wher-
ever necessary to avoid singular integrals. The limit V' — oo can be taken at the

end of the calculation.
General time dependence and spectral representation of G:

We consider a general, interacting many-body Hamiltonian H = Hy + V:

To make the time dependence explicit, we wrote the Heisenberg operators as

1

)

W

1) = ehp(F)e (3.173)
Wit

) = eMyi(re (3.174)

1

)

Y

where 1(7), ¢ T(7) are the field operators in the Schrédinger picture.

We then have (spin index suppressed):

t >t
G(f'— f', t— t’) = _Z'Z <¢0 ‘ethq/J(F)e_th} ¢m> (3.175)
(o 6101 (e | )
= =i > (G0 [6()] ) (D [ ()] b0) (3.176)
% e—Ti,EEm—Eo)(t’—t)

|pm) (&m| = 1 is the free (N-+1)-particle basis (eigenstates of H).

t<t:

G(r—t—t) = +iy_ {0 [01(7)] b ) (G [10(7)] do) e P B0 (3.177)
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where we have inserted a complete basis of H eigenstates of the (N-+1)-particle

system Y |ém) (¢m| and of the (N-1)-particle system Y, |ép) (| respec-
tively.

m,m’ runs over all possible states of the many-body system.

m: (N +1) — particle system (3.178)
m': N — particle system (3.179)

Position dependence of the matrix elements:

The operators and matrix elements in G have the following position dependence:
Vo (7) = e PT)(0)e™” (3.180)
since exp(—ipr) is the spatial translation operator, and

(G0 [(7)| ) = (o [0(0)] by e PP (3.181)

with pp = 0 (total momentum of the exact N-particle ground state for a transla-
tionally invariant system), pj, (total momentum of the (N+1)-particle eigenstate
|pmm) of H for a translationally invariant system) etc.

Hence, the Green’s function has the ¥ and ¢ dependence:

—q Zm |<¢0 |¢(0)| ¢m>|2 eiPm (F=7") o —i(Em—Eo)(t—t')
G(F—F’,t—t/) = (3.182)

03 (G [(0)] G0) | 7P (=) iy =F) (1)

The upper equations is valid if ¢ > ¢’ and the lower one if ¢t < t'.
Fourier transformation:

/ dB(F— ) e P (3.183)

/ d(t —t') et t=t) (3.184)

For convergence of the t-integral:

wo— wtin,  (E—t)>0 (3.185)
w o — w—1in, (t—1t)<0 (3.186)
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The Fourier transform of G(7"— 77, t — t') with respect to 7 — 7", t — t' is:

Gpw) = (=) > (b0 [(0)] dm)[* (27)6P) (5 — firm) (3.187)
» 1 " 1
(i) w— (Ep — Eo) +1in
+i > [ [10(0)] d0) P (27)%6D (5 + B (3.188)
1 1

'éw—(Em/—Eo)—iﬁ

It is convenient to write the energy differences E,, — Ey, F,,y — Ej in terms of the
excitation energies of the N-particle system.

Ejy is the ground state energy of the N-particle system. E,,, ., Ey are the total
energies of an (excited) (N+1)-, (N-1)-particle state, respectively.

We define the Fermi energy of the interacting system generalizing the non-

interacting case , as

dEo(N
Ep = Ey(N +1) — Eo(N) ~ ;](V)

=4 (3.189)

i.e., as the change of the ground state energy Ejy, as one particle is added to the

system. Ep is also called "chemical potential" p (at 7' = 0).

Ed

Jm
\i

Figure 3.8:



3.4. PERTURBATION THEORY FOR MANY-PARTICLE SYSTEMS 151

\

Fermi surfac

Figure 3.9:

The energy differences E,,(N+1)—Ey(N) and E,, (N —1)—Ey(N) have the char-
acter of a single-particle excitation energy, since one particle is added /substracted.

It is convenient to measure these differences relative to Er:
En(N+1)—EyN)=epn+ Ep, em = En(N+1)— Ey(N+1), (3.190)

where €, > 0 is by definition, the ezcitation energy of the (N-+1)-particle system
in state m.
For N > 1 one has

Er = Eo(N +1) — Ey(N) = Ey(N) — Eo(N — 1)+ O (%) (3.191)

and
Em/(N— 1) _EO(N) = Em/ —EF, Em = Em/(N— 1) —E()(N— 1) (3192)

with €, > 0 the excitation energy of the (N-1)-particle system in state m/.
For N > 1, the (N+1) and the (N-1)-particle system have the same excitation

energies:
Em! R Em, Er ~ E} (3.193)

(Remark: even/odd effects in mesoscopic systems with interaction.)
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The Green’s function then takes the form:

1

3.194
w—em—EF+i77( )

Gow) = > o |[¥(0)] ) [* (27)*6D (7 — i)

+ 3 b [1(0)] o) [* (27)°6) (5 — P (3.195)

1
X
w—|—€m/—EF—7;’/]’

where €, > 0, &, > 0 by definition.

It is convenient to write the sums over the eigenstates ) >, as a sum over
all eigenstates with energie in the interval [E, E + dE] and integrate over E > 0:

Z(...):/dE () (3.196)

E<em<E+dE

With the definitions

A, E)YE = (27 Y [ ()] ém)]* 6P (7 — pim) (3.197)

m
E<em<E+dE

B(pE)E = (21)° Y [ [0(0)| ¢0) 6P (T~ ) (3.198)

m/
E<e ,<E+dE

we have

oo A(p,E B(p,E
Gplw) = Jy~ dE |:W_E(_pEF)+in + w+E(—pEp)—in (3.199)

Lehmann representation

> Ap, E) B(p, E)
() = 3.200
Re Gz(w) 77/0 dE w—E—EF+w+E—EF ( )
Im Gy(w) = ~HA@,w = Br),  w> Br (3.201)
HIB(p, —w + Ep), w < Ep
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A(p,w — Er) = probability density for crating a particle with (3.202)
momentum p, energy w above Er from the ground state.

E(ﬁ, —w + Er) = probability density for destroying a particle with (3.203)
momentum p, energy w below Er from the ground state.

. Ap,w) == g(ﬁ,w — Ep) + E(ﬁ’ —w+ Ep)
spectral function

(3.110), (3.111)=

Re Gp(w) = 77/ dw’ Im Gy(w)sen (o = Br) (3.204)
T

w —w

Kramers-Kroenig violated — Gz(w) not analytic in upper or lower half plane.

5 ~

B(p,—(w—Ep)), w<Ep

A(F,w) = {fl(ﬁ,w—EF), w> Er (3.205)

Spectral function with A > 0 everywhere.

Using (3.110) and (3.111) we obtain:

+oo / . r_

w —w

Kramers-Kroening relation is violated, i.e. the time-ordered Green’s function is
neither analytic in the upper nor in the lower complex half plane.

For the retarded and advanced Green’s functions we obtain in a similar way:

A(p, E) n B(p, E)
w—FE—-Eprtin w+E—-Ep£in

R/A [
Gy (w) = /0 dE

(3.207)
2
). w—E-Ep+in
Spectral representation
It follows that
R/A —
Im G4 (w) = FrA(p,w — Er) (3.208)

and G}?/A(w) are analytic in the upper/lower complex half plane. This is - by

construction - in accord to the causality /anticausality of Gf/4,



154 CHAPTER 3. MANY-PARTICLE QUANTUM SYSTEMS

TA(P,w)=-1m %R(w) =Im GpA(co)

bound edge

M/w
o
Re GpR'A'T(w)
Figure 3.10:
Relevant variable: energy wrt. Frp:w=w— Fr — w
A R *

Relevance of G*/4 and of G:

G/A have the proper analytic and, therefore, causal behavior. However, as we
shall see, G'/4 are not suitable for constructing perturbation theory (PT).

The time-ordered Green’s function allows to contruct PT in a systematical way
and, in addition, contains the information about the Fermi energy because of its

sign change in Im Gz(w).

Strategy for calculating physical quantities:

1. Calculate G5(w) using, e.g., PT.
2. Take [Im Gp(w)| = TA(Piw) = FIm G (w).

3. Calculate the full G*/4 using Kramers-Kroenig
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3.4.5 The physical relevance of the poles of GS/A(Z) and of

R/A
Im G, (w)
Im Gg/A(w) = TA(p,w) (3.210)
= spectral density
= density of excitations of the system with energy w
above/below Fr and momentum
=Y ImGEw) = N(w) (3.211)
iz

= density of states at energy w

The poles of G]?/A(w):
The analyticity of Gg/A(z) can be expressed by defining another function Zg/A(z)

as

1
GHA(z) = (3.212)
! Z+EF—€ﬁ—2R/A(Z)

2

with ez =single-particle eigenenergies of the free system. Zg/A(z) is analytic in
the upper/lower half plane and Img/A(w) =R 0 on the real axis.

Zg/A is called selfenergy (3.213)

G]?/A(z) has a pole at zp:
20 =¢ep— Ep+ Eg/A(zo) (3.214)

(which is a nonlinear equation for zq via Eg/A(zO))

Usually this equation has exactly one solution. The physical reason for this
will become clear below.
By construction, for the non-interacting system ES/A(Z) =0.

If the interactions are not too strong, then

%(p) ~ 5 — Ep + 57 (e — Ep). (3.215)
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The physical meaning of zy becomes evident by Fourier transforming to time

space:
Gy (=) =

()

(x)  Bylz) =
with 2y =

GH(t) =

1
2+ Ep —ey— Zg/A(z)

(1-%L)
0z |z

zZ — 20
ox
25(20)4—%20(2—20)4‘...

2

(3.216)

(3.217)

(3.218)

2

(5+ Rey (55— Ep) = Br ) +ilm =7 (25) (3.219)

() < [Cﬁ(t>v C}(Oﬂ +>

1
[2)))
/dw —iwt <1 0= ZO)
—€

(3.220)

(3.221)

(3.222)

Physical interpretation of the Green’s function and its parameters:

The retarded Green’s function

GE() = —ib(1) <¢o

1)

— 0(t) (1—_

18

0z

o (£), 5, 0)

)
+

(3.223)

7 (exp(—i(es+ Re B (5 — Ex) — Ep)t)
2=z eXp(_(_Im Z;?(EP - EF))t)

e the amplitude for creating a particle with momentump’ and spin ¢ at time

t" = 0 in the many-body ground state |¢y) and destroying it at a later time

t > 0;
plus

o the amplitude for destroying a particle with momentum p and spin o at

time ¢ > 0 and creating it again at an earlier time ¢/
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Thus, G% (t) describes the propagation of a particle (p, ¢) from #' = 0 to t > 0 (in
the ground state) and the propagation of a hole (in the Fermi sea, or antiparticle)
with (—p, —o) backward in time from ¢ > 0 to ¢’ = 0.

—i<c(t), ¢(0)>

t'=0 >0

Figure 3.11:

—i <$0+(0), cpo(t)>

Figure 3.12:

Because of this interpretation, the Green’s function is also called (retarded, ad-

vanced, time-ordered) propagator.

Quasiparticles:

Since for an interacting system the many-body state C;;U(O)|¢0> is not an eigen-

state of the Hamiltonian, it decays in time, as also seen from the time-dependence
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of Ggg(t). The corresponding single-particle excitation of the ground state does,
therefore, not correspond to a real particle (which would have infinite life time)
and is, hence, called quasiparticle. In analogy, the state ¢z, (t)|¢o) corresponds to
a quasthole.

. R . . .
From the time dependence of G (t) we can identify the parameters:

e Quasiparticle energy (measured relative to FEr)

€pr =5+ ReXs,(e5— Er) — Ep (3.224)

e Quasiparticle decay rate

1
—=—2Im Eﬁg(&?ﬁ— EF) (3.225)
T

(The factor 2 comes from the fact that G is an amplitude and  is defined
for the probability |G#|.)

e Quasiparticle weight

-1 -1
ox ORe X

1—— ~|[1- 3.226

< 02 Z=20> < 0w Wzgﬁ) ( )

For particle propagation <cﬁa(t)c;b(0)> © g >0 (3.227)

For hole propagation <c}0(0)cﬁo(t)> C 5 <0 (3.228)

In a relativistic theory a hole (in the Fermi sea) corresponds to an antiparticle
(in the Dirac sea) and the propagation backward in time of holes/antiparticles is
automatically built into the retarded Green’s function.

From the quasiparticle interpretation of c}o |o) it is clear that for a "well-behaved"
system G () should have exactly one pole in the lower half plane for each (), o).
Exceptions from this rule are possible if the particle-particle interaction is suffi-

ciently singular.

3.4.6 Perturbation theory for GG: Wick’s theorem, Feyn-

man diagrams, linked cluster theorem

Time dependent perturbation theory for many-body states
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In the interaction picture we had in section 3.4.1:

H = Hy+V many-body Hamiltonian (3.229)
Hy = Zép 5Cpis Ciio single-particle operator (3.230)

1 d3 d3 / d3
= P
"o / 2m)3 /(QW) /(27r) V(@) 100 —qoCro s (3.231)

=5 / da! (@)l @)V (2 — o (@) (@) (3.232)

two-particle interaction (3.233)
d
z@\@[ = Vi(t)|o)r state (3.234)
d
Z@A[(f) = [A[(t), H] (3.235)
Ap(t) = ot A(0)eHot operator, known (3.236)

Since [V(t), Vi(t")] # 0, formal solution for |¢):

6(0); = (B(t)) — i / Vi) 6(¢)) dt (3.237)

to
We now assume that the interaction is switched on adiabatically from t — —o0o
and switched off adiabatically for t — 4-o0:
Vi(t) — 0 (3.238)

t—+o00

Adiabatically means that this t-dependence is slower than any of the intrinsic
time scales of the system, i.e. can be neglected for solving the system. For
t — £00 [¢p(+o0))s is then known and is an eigenstate of the free system Hy (e.g.
free Fermi sea).

Thus, we have by iteration:

61 = |6(—00)); —i / d Vi () 6(2))1 (3.239)
16V, -
— Jé(—o0)) — i / 0t Vi(t')é(—o0)) (3.240)

/ dt/ dt" Vit Vi (t")|p(—o0)) (subscript I dropped)

0 T{exp (=i [ _arvier) brot=oe) (3:241)
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S(ty,ty) =T {exp (—i s dtV,(t’))} (3.242)

Time evolution operator in interacting picture. Generally V(x,z’) can depend

on two times.

(*) Rewriting successive time-integrals as a time-ordered product:

)

/ Car / t " Vit Vi (t") (3.243)

dt”VI Wit / dt' / dt" Vi(t"\Vi(t)  (3.244)

(**)

/ dt" VitV (") +/ dt”/ dt' Vit Vi (t") (3.245)

-

\\

t’<—>t

t t
= 2 / dt’ / dt" V(£ Vi (t") (3.246)

— 00 — 00

(#x) V contains even number of operators so that the "+" is valid for bosons and

fermions.

Figure 3.13:
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Figure 3.14:

Same integration area and same integrand for both integrals.

For an k!-fold time-ordered product one obtains k! equal successive integrals

according to the k! orderings of the V;(t;)'s:

t t t
T/ dtl/ dtg.../ Aty Vi(t)) ... Vilty) = (3.247)

t t1 th—1
k:!/ dtl/ / Aty Vi(ty) .. Vilty)

This proves the equality ().

S(ta,t1) hast the multiplication property, by definition:
S(ta,t3)S(ts,t1) = S(to, 1)

S(t,t) =1 (3.248)
[S(tz, t3)]_1 - S(tg, tz) - ST(tQ, t3) unitary

To calculate the Green’s function, we need to evaluate expectation values of the

form

1(o| T Aw (1) Br (t2)Cr(ts) - . [ ¢o) (3.249)

in the Heisenberg picture. It is useful to write this in the interaction picture,
where the t-dependence of the operators is known. S establishes the connection

between the Heisenberg and the interaction picture:

[0(8))1 = S(t, —00)|P) (3.250)
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From the expectation value

H(GlAa®)| o)y = u(o(t)|Ar(t)|o(t))r (3.251)
= (¢nl[S(t, —00)| 7 As(t)S(t, —00)|om) (3.252)

it follows
Ap(t) =[5(t, —oo)]_lAI(t)S(t, —00). (3.253)

Connection between Heisenberg and interaction picture operators.

Thus we have

10| T{An(t1)Bu(ta) ...} o) u (3.254)
= (o T{S ™ (t1, —00) A(t1) S(t1, —00) ™} (t2, —00) B(t)  (3.255)
(1) S(—o0,ta)

o) }

XS(tQ, —OO) .- }|¢0>H

= g{do|T{S (00, —00)S(00, t;)A(t;)S(t1, t2) B(ts) (3.256)
xS (ts, —00) .. .Hdo)n
= oS (00, —00)T{A(t1)B(ts) . .. S (00, —00) M o) i, (3.257)

where the time ordering operator T puts the appropriate factors of S(oco, —00) in
between the A, B, .. ..

(1) S7'(t;,—o0) = S(—o0,t;) = S(—00,00)S(00,t) (3.258)

= S !(00, —00)S (o0, 1) (3.259)

1{90]S™" (00, —00) = [S(00, —00)[¢0) u]' (3.260)

The state S(00, —00)|¢pg) i is the free ground state at ¢ = —oo evolved to t = +o0.

Since the interaction is adiabatically switched on and off, this must be again the

ground state, i.e. it can differ from |¢g)y only ba a phase factor,

S(00, —00)|do)u = €"|¢o) u, (3.261)

where

€ia = H<¢0|S(OO, —OO)|¢0>H (3262)



3.4. PERTURBATION THEORY FOR MANY-PARTICLE SYSTEMS 163

Therefore

1(Gol T{A(t) B(ts) ... S(00, —00) } o) iy
(90| S(00, —00)[¢0) m ’
(3.263)

1 (0ol T{An (1) By (ts) . . }|oo) rr =

where |¢o) i is the (Heisenberg) ground state of the free system, and A(ty), B(tz), . ..
are operators in the interaction picture, whose t-dependence is known.

In particular, the t-ordered G function is:

(G| T{ (7, )1 (7, ) S (00, —00) } do) (3.264)

G(x,z') = —i 10| S (00, —00)|do) 1

e [t is clear that the t-ordering is essential for obtaining this formula.

e The phase factor in the denominator will be important.

A perturbation series is generated in a natural way by expanding S in powers
of the interaction V. This generates expectation values of products of more and
more field operators v, 1T, These high-order expectation values can be factorized
into products of free single-particle Green’s functions by means of the Wick the-

orem.
Wick’s theorem

Let ¥(7,t) = exp (+iHot) ¥ (7) exp (—iHot) be field operators in the interaction
picture (or free Heisenberg operators), which have canonical equal-time (anti-)
commutation relations,

[ (7, 1), 0T (7, 1)] = 6@ (7 — ) (3.265)

(general: C-number)



164 CHAPTER 3. MANY-PARTICLE QUANTUM SYSTEMS

The free N-particle Green’s function can be written as

GMO gy, Xy, 2y (3.266)

= (=) w(eolT {W(x1) .. Y(an)y (1) .. W (@)} |¢0)m (3.267)

= (=) > (il)PG(O (21, 1)) GO (@2, Tpa)) - - - (3.268)
Py

xGO (zy, l"lp(N))

" for bosons and "-" for fermions. P is the number of commutations to bring

the N pairs of operators next to each other in the order w(xl)wT(a:’P(l)).

Example:

G(z)’(o)(l’la@%xlpxé) = [G(O)(Ilal’ll)G(o)(%,x/z) - G(O)(l’lal’/z)G(O)(l’zaxﬁ)}

(3.269)
Proof: Complete induction
From the equation of motion
{Z% — HO] GOz, 2") = 6(t — )6 (7 — ) (3.270)
the free 1-particle Green’s function is the inverse operator:
-1
GOz, 2') = [z% — Ho] (3.271)
i = Hulan)| (<) (ol T{@) - o)) (3272
xpt(@]) . ()} bo)m
-5 - N
= |ig ~ Mol ( DV Y EDT a0l T{T{$(x) 0 ()} (3.273)
L - j=1
xip(xa) . ()t (1) ~-¢£j)---¢T(9«“N)}|¢o>
missing

= (=N (=16 D (@ —af)  w(G|T{w(ws) .. v(an)yl (7)) (3.274)

Jj=1

x M) T (@) o)
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P;

 is the number of commutations to bring (z1), ' (2;) together.

Acting with inverse operator [i% — Ho(x1)|  on both sides:

GO (g a2, Ty NZ 1) GO (2, 2%) (3.275)

-1
The Wick theorem follows by repeated action of z'% — Ho(a:i)} i=1,...,N—
1 on GO

Note: The essential ingredients for the Wick theorem to be valid are:

- The field operators obey canonical equal-time commutation

relations.

- Their t-dependence is according to the free Hamiltonian H,

(i.e. operators must be in interacting picture).

- The free Hamiltonian Hy must be a single-particle operators,
because otherwise the equation of motion of G(©) would not
have the simple form necessary for the proof of the Wick

theorem.

Perturbation series:

The exact interacting Green’s function can be expanded in powers of the in-
teraction Vi(t):

(T{y(x)t( exp( i [*dt f+°°dt2\/1(t1,t2)>})

3.276
(Texp< i [Tt [T dt VI(%@))) ( |

G(z,2") = —i
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with

400 “+o00 .
/ dt, / A Vit ) = / dhey V(- w2)dh (1), (22)(3.277)

N o 2
Xd}m(x?)wcrl(xl)
= (i\t,0) etc. (3.278)
Y(z) = Yy ete. (3.279)
often: V() —35) = 6(t1 — to)V(F — ) (3.280)

Gz, o) = 7 [<T {¥(z) )}> (3.281)

(oo,oo

/d4l’1 d4 Xry — 1'2)

{¢@»¢Wz@¢v%wym}>
)

)

<

— 1 1
( ol d4113'1 .. ./d4l’4 §V(ZL'1 — 1’2)5‘/(1’3 - 1’4)

X<{W@WWWMWWWMMWQ>+W}

~.

X
+

Using Wick’s theorem, each order can be factorized into free, single-particle

Green’s functions G°:

G(z,2") = ((— [Go(x ) (3.282)

/d4x1/d 2o V(21 — 29)G° (2, 1) GO (1, 2')
xGO(x4, x3)
—i)i® /d4x1/d 2o V(11 — 22)G° (2, 21) GO (1, 72)
xGO(zg,7) + .. ]
In the k-th order there appear £’ equal terms, because a permutation of any two

coordinate pairs (z1,22), (3, 24) in the last expression leads to the same term.

This cancels exactly the % of the Taylor expansion in each order.

Feynman diagrams:

The mathematical expressions in each order have an extremely useful diagra-

matic representation:
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" 1
G(x,x)= <S(+oo,—oo)>|;’ @ > é >

X X'X;  Xp X X

Figure 3.15: Green’s function G(z,2’) in Feynman diagrams

The prescriptions how to translate a diagram into a mathematical expression are

called Feynman rules and can be read off from the preceding derivation.

Feynman rules:

(1.) Each solid line with end points z;, z; and with a direction marked by the

arrow corresponds to a (free) Green’s function G:

(%) W(x;)
Xi X;

Figure 3.16: Green’s function G° in Feynman diagram

= G(x;, X))

The foot of the arrow represents a creation operator v, the head of the

arrow represents a desctruction operator .

(2.) A wavy line corresponds to the interaction potential
L G N ) Z V(X=X

Figure 3.17: Interaction potential in Feynman diagram

(3.) Internal space-time and spin coordinates (not at an end point of a diagram)x; =

(73, t;, 0;) are integrated (or summed) over:
= / dt; / d*r; Y Mvertex" (3.283)

(4.) The prefactor of a diagram:

¢ for each Green’s function in the diagram

(—i)¥  for a diagram of k-th order in V from the Taylor expansion

of T exp (—i/dt v)

(—=1)  for each closed loop of connected fermion Green’s function lines
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(5.) To obtain all contributions to G at a given order O(V') draw all topologically

different Feynman diagrams.

The phase factor (S(400, —00)) in G can be expanded in a similar way. Since
it has no external coordinates and all internal coordinates are integrated over,

(S(+00, —00)) contains only closed diagrams:

<TeXp (—z /+OO dt1/dt2VI t1,t2) > (3.284)
= 1 (=) [t [ da Vi o) (F{wlulvnn}) (3.255)

+( i)’ /d4 /d zav(ry — 22)V (23 — 24)

2!
X <T {¢I¢;¢2¢1¢§¢1¢4¢3}> +
= 1+(—i)i2/d4x1/d4x2 V(zy — 29)G°(1, 22)GO(29, 1) (3.286)

—Z)iz/d4x1/d4x2 V(l’l —LUQ)GO(ZCl,LUl)GO(SL’Q,IQ)

The last equation above can be expressed in Feynman diagrams so that we get:

Figure 3.18:

The linked cluster theorem:

The full Green’s function, including the phase factor, can be written as:
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_Oov0 s Qom0

S 9 e P 9%

Glxx) = (3.198)

e N ST Rellel

(3.199)
) OO - |

_ [ =(all connected diagrams]] +3 (all closed diagrams)] (3.200

[1+% (all closed diagrams)] B

= ¥ all connected diagrams (3.201;

Note the usefulness of diagrams to derive this result.
Linked cluster theorem
Only connected diagrams contribute to G(x, '), and the phase factor is cancelled.

[Feynman diagrams in momentum space: k,w conservation at each vertex

3.4.7 The Dyson equation and the selfenergy

Assuming that the perturbation series for G converges (!), the infinite series can

be re-ordered:



170 CHAPTER 3. MANY-PARTICLE QUANTUM SYSTEMS

Gxx') = == (3.202;

_ B I e N T T TP Y

X1 X2

L9 e
| |5
Sl ||, 5T

¢ ? s
e I .

SEES

all terms of G containing 1 2 3
irreducible parts

Irreducible diagram:
Diagram, which cannot be decomposed into two disconnected parts by cutting

one G-line.
Definition:

Selfenergy ¥ := Y of all irreducible diagrams including the prefactor from Feyn-

man rules without external lines
Z(xx)= 5@“&; +2.+ + + - (3.204)
:X@X, (3.205)

Hence:

— = ++9—@++9—W+"- (3.206;
X' Xq Xy, X

= + { +9—@—»+---} (3.207,

—_ = > 4 +@:: Dyson equation (3.208

or in terms of formulas:

G(z, ") :GO($>$,)+/CZ4$1/CZ4$2 GO (@, 29) B2, 1) G (21, ) +. .. (3.287)
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G(z,2') = Gz, 7)) +/d4:c1/d4x2G0(x,:cg)Z(x2,:c1)G(:c1,x) (3.288)

Dyson equation for interacting particles

Gx,2') = Gz —2) (3.289)
Y(z,2') = X(z—12) (3.290)
Gz, 2") = Gz —2a) translational invariance (3.291)

In a translational invariant system:

Gy = Gg)) (w) + Glgo) (W)E5(w)Gp(w) Dyson equation (3.292)
1
Golw) = ———— Br —S0) (3.293)
P P
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