Origin of Dark Matter

Manuel Drees

Bonn University

1 Introduction

2 Network Activities

- **1** Introduction
- **2 Network Activities**
- **3 Other Developments**

Introduction
 Network Activities
 Other Developments

 a) Theoretical

- **1** Introduction
- **2 Network Activities**
- **3 Other Developments**
 - a) Theoretical
 - b) Experimental/observational

- **1** Introduction
- **2 Network Activities**
- **3 Other Developments**
 - a) Theoretical
 - b) Experimental/observational

4 Summary

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)
 - Models of structure formation, X ray temperature of clusters of galaxies, ...

- Galactic rotation curves imply $\Omega_{\rm DM}h^2 \ge 0.05$.
- Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.
- *h*: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)
 - Models of structure formation, X ray temperature of clusters of galaxies, ...
- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{\rm DM} h^2 = 0.105^{+0.007}_{-0.013}$ Spergel et al., astro-ph/0603449

Total baryon density is determined by:

Big Bang Nucleosynthesis

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

Total baryon density is determined by:

- Big Bang Nucleosynthesis
- Analyses of CMB data

Consistent result: $\Omega_{\rm bar}h^2 \simeq 0.02$

 \implies Need non–baryonic DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Only possible non-baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly $\Longrightarrow \Omega_{\nu} h^2 \lesssim 0.01$

 \implies Need exotic particles as DM!

Possible loophole: primordial black holes; not easy to make in sufficient quantity sufficiently early.

It does not only come from WMAP data!

- It does not only come from WMAP data!
- It depends on many assumptions (e.g., nearly scale independent primordial power spectrum)

- It does not only come from WMAP data!
- It depends on many assumptions (e.g., nearly scale independent primordial power spectrum)
- Need for DM is much more general than this!

- It does not only come from WMAP data!
- It depends on many assumptions (e.g., nearly scale independent primordial power spectrum)
- Need for DM is much more general than this! E.g. Wiltshire (et al.), gr-qc/0702082, arXiv:0709.0732 [gr-qc], arXiv:0709.2535 [astro-ph], explains accelerated expansion in inhomogeneous universe: finds $\Omega_{\rm DM} = 3.1^{+1.8}_{-1.1}\Omega_{\rm baryon}$.

- It does not only come from WMAP data!
- It depends on many assumptions (e.g., nearly scale independent primordial power spectrum)
- Need for DM is much more general than this! E.g. Wiltshire (et al.), gr-qc/0702082, arXiv:0709.0732 [gr-qc], arXiv:0709.2535 [astro-ph], explains accelerated expansion in inhomogeneous universe: finds $\Omega_{\rm DM} = 3.1^{+1.8}_{-1.1}\Omega_{\rm baryon}$.

E.g. Ferreras, Sakellariadou, Yusaf, arXiv:0709.3189 [astro-ph]: Strong lensing implies that even MOND needs galactic DM!

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

• Matter (with negligible pressure, $w \simeq 0$)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)

What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)
- and has (strongly) suppressed coupling to elm radiation

Network activities: Making DM

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Network activities: Making DM

Let χ be a generic DM particle, n_{χ} its number density (unit: GeV³). Assume $\chi = \overline{\chi}$, i.e. $\chi \chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_{χ} determined by Boltzmann equation; in standard cosmology:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \, \rm eq}^2 \right)$$

 $H = \dot{R}/R$: Hubble parameter $\langle \dots \rangle$: Thermal averaging $\sigma_{ann} = \sigma(\chi \chi \to SM \text{ particles})$ v: relative velocity between χ 's in their cms $n_{\chi, eq} : \chi$ density in full equilibrium

In Supercritical String Cosmology

ref.: Lahanas, Mavromatos, Nanopoulos, hep-ph/0612152, Phys. Lett. B649, 83 (2007)

• New positive contributions to H: Increase Ω_{χ}

In Supercritical String Cosmology

ref.: Lahanas, Mavromatos, Nanopoulos, hep-ph/0612152, Phys. Lett. B649, 83 (2007)

- New positive contributions to H: Increase Ω_{χ}
- In Boltzmann eq.: $3H \rightarrow 3H \dot{\phi}$ (ϕ : dilaton field): Reduces Ω_χ

In Supercritical String Cosmology

ref.: Lahanas, Mavromatos, Nanopoulos, hep-ph/0612152, Phys. Lett. B649, 83 (2007)

- New positive contributions to H: Increase Ω_{χ}
- In Boltzmann eq.: $3H \rightarrow 3H \dot{\phi}$ (ϕ : dilaton field): Reduces Ω_χ
- 2nd effect wins; Ω_{χ} reduced by ~ factor 10; widens acceptable SUSY parameter space (see below).

ref: MD, Iminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

Parameterize deviation from standard cosmology:

 $H(T) = H_{\text{standard}}(T)/A(T)$

ref: MD, Iminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

Parameterize deviation from standard cosmology:

 $H(T) = H_{\text{standard}}(T)/A(T)$

• Taylor expand A in $z=m_\chi/T$ around $z=z_F\simeq 0.05,$ up to 2nd order

ref: MD, Iminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

Parameterize deviation from standard cosmology:

 $H(T) = H_{\text{standard}}(T)/A(T)$

- Taylor expand A in $z=m_\chi/T$ around $z=z_F\simeq 0.05,$ up to 2nd order
- **BBN:** Need $A(0) = 1 \pm 0.2$

ref: MD, Iminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

Parameterize deviation from standard cosmology:

 $H(T) = H_{\text{standard}}(T)/A(T)$

- Taylor expand A in $z=m_\chi/T$ around $z=z_F\simeq 0.05,$ up to 2nd order
- **BBN:** Need $A(0) = 1 \pm 0.2$
- Fix annihilation cross section to get right Ω_{χ} in standard cosmology

Model independent approach

ref: MD, Iminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

Parameterize deviation from standard cosmology:

 $H(T) = H_{\text{standard}}(T)/A(T)$

- Taylor expand A in $z = m_{\chi}/T$ around $z = z_F \simeq 0.05$, up to 2nd order
- **BBN:** Need $A(0) = 1 \pm 0.2$
- Fix annihilation cross section to get right Ω_{χ} in standard cosmology
- $0.3 \leq A(z_F) \leq 5$ still allowed (2σ)

Model independent approach

ref: MD, Iminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

Parameterize deviation from standard cosmology:

 $H(T) = H_{\text{standard}}(T)/A(T)$

- Taylor expand A in $z = m_{\chi}/T$ around $z = z_F \simeq 0.05$, up to 2nd order
- **BBN:** Need $A(0) = 1 \pm 0.2$
- Fix annihilation cross section to get right Ω_{χ} in standard cosmology
- $0.3 \leq A(z_F) \leq 5$ still allowed (2σ)
- Even if $A''(z_F) = 0$: $0.5 \leq A(z_F) \leq 1.8$ allowed

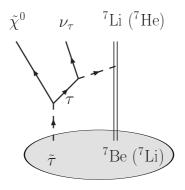
ref: Jittoh, Kohri et al., arXiv:0704.2914 [hep-ph]

Assume DM is lightest neutralino, $\chi = \tilde{\chi}_1^0$

ref: Jittoh, Kohri et al., arXiv:0704.2914 [hep-ph]

- Assume DM is lightest neutralino, $\chi = \tilde{\chi}_1^0$
- Assume $\tilde{\tau}_1$ only very slightly heavier than $\tilde{\chi}_1^0$: $\tilde{\tau}_1$ still around at time of BBN:

ref: Jittoh, Kohri et al., arXiv:0704.2914 [hep-ph]

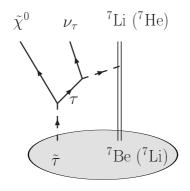

- Assume DM is lightest neutralino, $\chi = \tilde{\chi}_1^0$
- Assume $\tilde{\tau}_1$ only very slightly heavier than $\tilde{\chi}_1^0$: $\tilde{\tau}_1$ still around at time of BBN:
 - Formation of $(\tilde{\tau}_1^7 Be)$ bound states can lead to over-production of 6 Li through catalyzed fusion (Pospelov; ...)

ref: Jittoh, Kohri et al., arXiv:0704.2914 [hep-ph]

- Assume DM is lightest neutralino, $\chi = \tilde{\chi}_1^0$
- Assume $\tilde{\tau}_1$ only very slightly heavier than $\tilde{\chi}_1^0$: $\tilde{\tau}_1$ still around at time of BBN:
 - Formation of $(\tilde{\tau}_1^7 Be)$ bound states can lead to over-production of ^6Li through catalyzed fusion (Pospelov; ...)

Formation of $(\tilde{\tau}_1^7 \mathrm{Li})$ bound states can

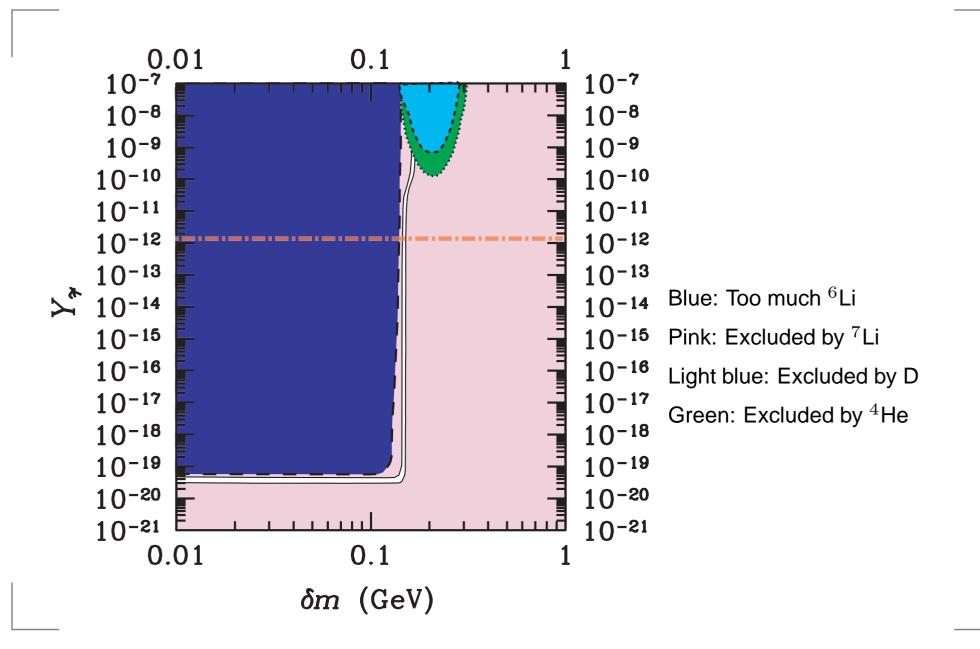
• lead to ⁷Li depletion through interaction of π^- from $\tilde{\tau}_1$ decay

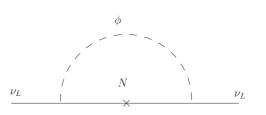

bound state

ref: Jittoh, Kohri et al., arXiv:0704.2914 [hep-ph]

- Assume DM is lightest neutralino, $\chi = \tilde{\chi}_1^0$
- Assume $\tilde{\tau}_1$ only very slightly heavier than $\tilde{\chi}_1^0$: $\tilde{\tau}_1$ still around at time of BBN:
 - Formation of $(\tilde{\tau}_1^7 Be)$ bound states can lead to over-production of 6 Li through catalyzed fusion (Pospelov; ...)

Formation of $(\tilde{\tau}_1^7 \mathrm{Li})$ bound states can

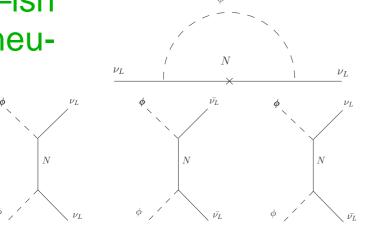

Iead to ⁷Li depletion through interaction of π^- from $\tilde{\tau}_1$ decay


bound state

Can solve both Lithium problems in narrow range of parameter space.

DM and BBN (cont.'d)

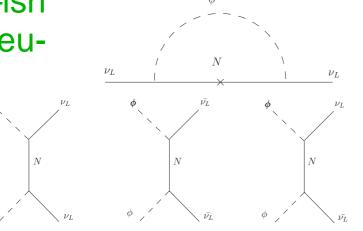
Basic idea: Loop diagram with MeV–ish scalar DM particle creates eV–ish neutrino mass.



ref: Boehm et al., hep-ph/0612228

Basic idea: Loop diagram with MeV-ish scalar DM particle creates eV-ish neutrino mass.

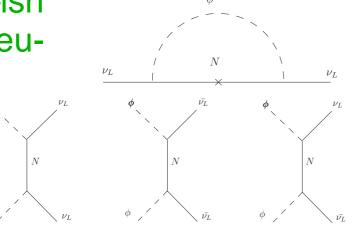
Cut version of same diagram determines ϕ relic density


ref: Boehm et al., hep-ph/0612228

Basic idea: Loop diagram with MeV–ish scalar DM particle creates eV–ish neutrino mass.

Cut version of same diagram determines ϕ relic density

ref: Boehm et al., hep-ph/0612228

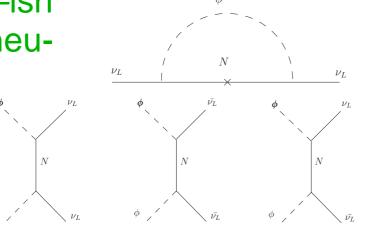

Problems:

• Effective interaction violates $SU(2) \times U(1)_Y$ gauge invariance

Basic idea: Loop diagram with MeV–ish scalar DM particle creates eV–ish neutrino mass.

Cut version of same diagram determines ϕ relic density

ref: Boehm et al., hep-ph/0612228


Problems:

- Effective interaction violates $SU(2) \times U(1)_Y$ gauge invariance
- Have sufficiently many parameters to adjust m_{ν}, Ω_{ϕ} independently

Basic idea: Loop diagram with MeV–ish scalar DM particle creates eV–ish neutrino mass.

Cut version of same diagram determines ϕ relic density

ref: Boehm et al., hep-ph/0612228

Problems:

- Effective interaction violates $SU(2) \times U(1)_Y$ gauge invariance
- Have sufficiently many parameters to adjust m_{ν}, Ω_{ϕ} independently
- No mechanism for $\phi\phi \rightarrow e^+e^-$, explaining 511 keV excess

ref: Allahverdi, Dutta, Mazumdar, hep-ph/0702112

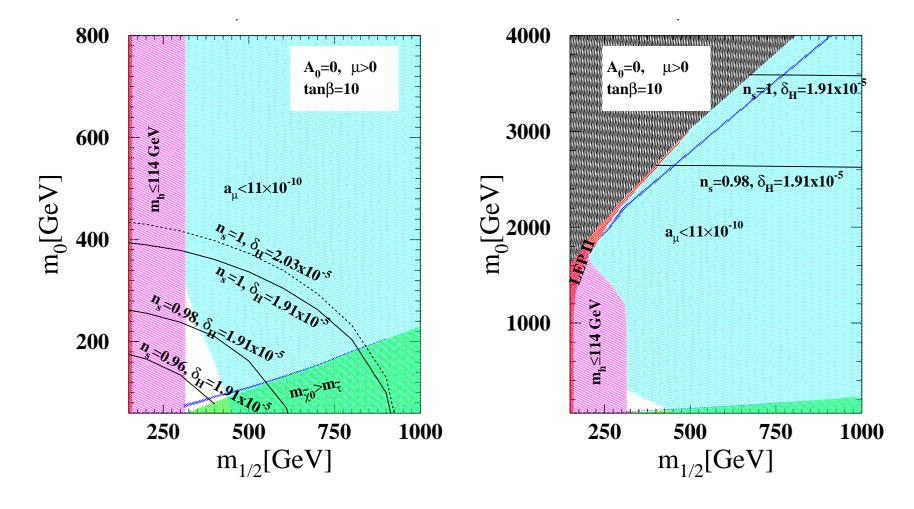
Can have inflation along MSSM flat direction, if certain relation between soft breaking masses holds to good approximation

ref: Allahverdi, Dutta, Mazumdar, hep-ph/0702112

- Can have inflation along MSSM flat direction, if certain relation between soft breaking masses holds to good approximation
- Get acceptable density perturbations for flat directions lifted by d = 6 operators

ref: Allahverdi, Dutta, Mazumdar, hep-ph/0702112

- Can have inflation along MSSM flat direction, if certain relation between soft breaking masses holds to good approximation
- Get acceptable density perturbations for flat directions lifted by d = 6 operators
- Preferred inflation mass near 100 GeV, $H_I \sim 0.01$ to 1 GeV


ref: Allahverdi, Dutta, Mazumdar, hep-ph/0702112

- Can have inflation along MSSM flat direction, if certain relation between soft breaking masses holds to good approximation
- Get acceptable density perturbations for flat directions lifted by d = 6 operators
- Preferred inflation mass near 100 GeV, $H_I \sim 0.01$ to 1 GeV
- Even in mSUGRA: Can be combined with thermal $\tilde{\chi}_1^0$ DM!

DM and MSSM Inflation (cont'd)

 $\lambda = 1$

 $\lambda = 0.1$

ref: MD, Shan, astro-ph/0703651

• Direct detection rate $\propto \int_0^\infty \frac{f_1(v)}{v} dv$

- Direct detection rate $\propto \int_0^\infty \frac{f_1(v)}{v} dv$
- Can be inverted to directly determine WIMP velocity distribution $f_1(v)$!

- Direct detection rate $\propto \int_0^\infty \frac{f_1(v)}{v} dv$
- Can be inverted to directly determine WIMP velocity distribution $f_1(v)$!
- \checkmark For one target: Need to know $m_{\chi},$ but do not need to know cross section, ρ_{χ}

- Direct detection rate $\propto \int_0^\infty \frac{f_1(v)}{v} dv$
- Can be inverted to directly determine WIMP velocity distribution $f_1(v)$!
- \checkmark For one target: Need to know m_{χ} , but do not need to know cross section, ρ_{χ}
- Need hundreds of events to get meaningful result for $f_1(v)$

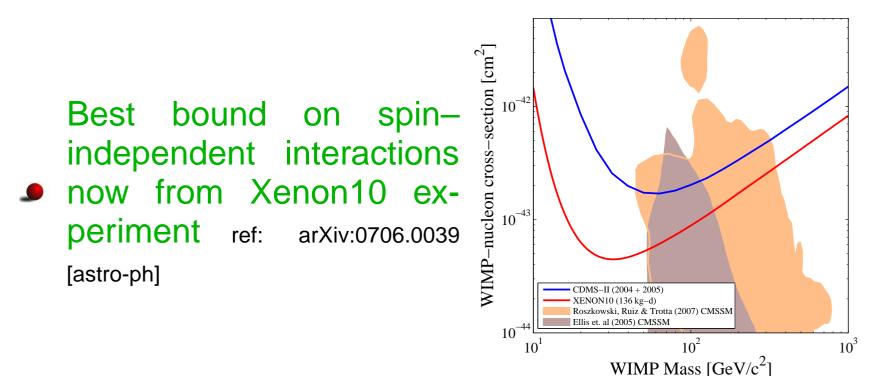
- Direct detection rate $\propto \int_0^\infty \frac{f_1(v)}{v} dv$
- Can be inverted to directly determine WIMP velocity distribution $f_1(v)$!
- \checkmark For one target: Need to know m_{χ} , but do not need to know cross section, ρ_{χ}
- Need hundreds of events to get meaningful result for $f_1(v)$
- Can get non-trivial info on moments of f_1 from few dozen events

- Direct detection rate $\propto \int_0^\infty \frac{f_1(v)}{v} dv$
- Can be inverted to directly determine WIMP velocity distribution $f_1(v)$!
- \checkmark For one target: Need to know m_{χ} , but do not need to know cross section, ρ_{χ}
- Need hundreds of events to get meaningful result for $f_1(v)$
- Can get non-trivial info on moments of f_1 from few dozen events
- With ≥ 2 targets: Allows model-independent determination of $m_{\chi}!$

Lightest neutralino remains in good shape as thermal WIMP in various simple SUSY models (mSUGRA and slight generalizations). ref: Ellis et al., hep-ph/0607002, arXiv:0704.3446 [hep-ph], arXiv:0706.0652 [hep-ph]; Baer et al., hep-ph/0610154, hep-ph/0611387, hep-ph/0703024, arXiv:0707.0618 [hep-ph], arXiv:0708.4003 [hep-ph]

- Lightest neutralino remains in good shape as thermal WIMP in various simple SUSY models (mSUGRA and slight generalizations). ref: Ellis et al., hep-ph/0607002, arXiv:0704.3446 [hep-ph], arXiv:0706.0652 [hep-ph]; Baer et al., hep-ph/0610154, hep-ph/0611387, hep-ph/0703024, arXiv:0707.0618 [hep-ph], arXiv:0708.4003 [hep-ph]
- Many other reasonably well motivated candidates continue to exist (WIMPs in Little Higgs models: branons; axions; ...)

- Lightest neutralino remains in good shape as thermal WIMP in various simple SUSY models (mSUGRA and slight generalizations). ref: Ellis et al., hep-ph/0607002, arXiv:0704.3446 [hep-ph], arXiv:0706.0652 [hep-ph]; Baer et al., hep-ph/0610154, hep-ph/0611387, hep-ph/0703024, arXiv:0707.0618 [hep-ph], arXiv:0708.4003 [hep-ph]
- Many other reasonably well motivated candidates continue to exist (WIMPs in Little Higgs models: branons; axions; ...)
- Nevertheless, people keep inventing new WIMP models with little or no theoretical motivation

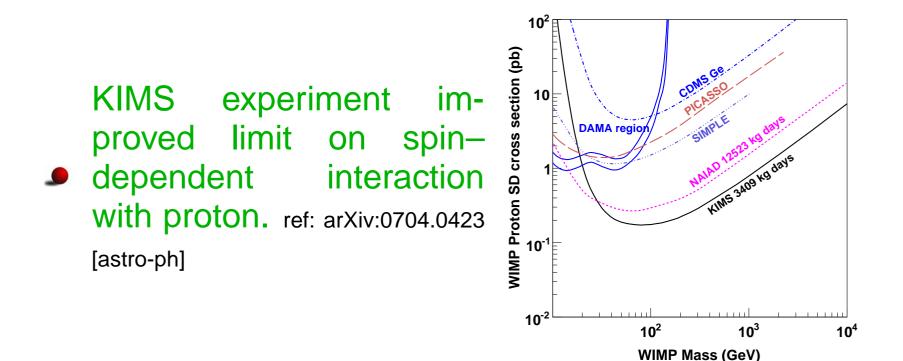

- Lightest neutralino remains in good shape as thermal WIMP in various simple SUSY models (mSUGRA and slight generalizations). ref: Ellis et al., hep-ph/0607002, arXiv:0704.3446 [hep-ph], arXiv:0706.0652 [hep-ph]; Baer et al., hep-ph/0610154, hep-ph/0611387, hep-ph/0703024, arXiv:0707.0618 [hep-ph], arXiv:0708.4003 [hep-ph]
- Many other reasonably well motivated candidates continue to exist (WIMPs in Little Higgs models: branons; axions; ...)
- Nevertheless, people keep inventing new WIMP models with little or no theoretical motivation
- Scenarios with gravitino DM and long–lived $\tilde{\tau}_1$ are now quite strongly constrained by BBN (Li overproduction): bad news for testability of this scenario

Direct DM Searches

• DAMA stands by their claim of having observed a signal for annual modulation (6.3 σ , but χ^2 fit gives prob. for constant rate $\simeq 7 \cdot 10^{-4}$). Everybody else only gives bounds.

Direct DM Searches

• DAMA stands by their claim of having observed a signal for annual modulation (6.3 σ , but χ^2 fit gives prob. for constant rate $\simeq 7 \cdot 10^{-4}$). Everybody else only gives bounds.



Direct DM Searches (cont'd)

 CDMS continues to give best limit for spin-dependent interaction with neutron (from 2005)

Direct DM Searches (cont'd)

 CDMS continues to give best limit for spin-dependent interaction with neutron (from 2005)

Indirect DM Detection: Photons

Signals are everywhere!

"WMAP haze": Excess of microwave photons from central region of our galaxy: Could be due to generic WIMP (synchrotron radiation) ref: Hooper et al., arXiv:0709.3114 [astro-ph]

Indirect DM Detection: Photons

Signals are everywhere!

- "WMAP haze": Excess of microwave photons from central region of our galaxy: Could be due to generic WIMP (synchrotron radiation) ref: Hooper et al., arXiv:0709.3114 [astro-ph]
- Excess of 511 keV photons from central region of our galaxy: Needs $m_e < m_\chi \lesssim 10$ MeV (e^+e^- annihilation at rest) ref: Boehm et al., Phys. Rev. Lett. 92, 101301 (2004), astro-ph/0309686.

Indirect DM Detection: Photons

Signals are everywhere!

- "WMAP haze": Excess of microwave photons from central region of our galaxy: Could be due to generic WIMP (synchrotron radiation) ref: Hooper et al., arXiv:0709.3114 [astro-ph]
- Excess of 511 keV photons from central region of our galaxy: Needs $m_e < m_\chi \lesssim 10$ MeV (e^+e^- annihilation at rest) ref: Boehm et al., Phys. Rev. Lett. 92, 101301 (2004), astro-ph/0309686.
- Excess of extragalactic MeV-ish photons: Could be due to decaying DM with $\delta m_{\chi} \sim 1$ MeV. ref: Cembranos, Feng, Strigari, arXiv:0704.1658 [astro-ph]

Indirect DM Detection: Photons (cont'd)

Signals are everywhere!

• Excess of GeV-ish photons everywhere: Could be due to (SUSY) WIMP with $m_\chi \sim 50~{\rm GeV}$. ref: de Boer et al., Phys. Rev.

Lett. 95, 209001 (2005), astro-ph/0602325

Indirect DM Detection: Photons (cont'd)

Signals are everywhere!

- Excess of GeV--ish photons everywhere: Could be due to (SUSY) WIMP with $m_{\chi} \sim 50$ GeV. ref: de Boer et al., Phys. Rev. Lett. 95, 209001 (2005), astro-ph/0602325
- TeV—ish photons from (near) galactic center: definitely not from DM. ref: H.E.S.S. collab., Phys. Rev. Lett. 97, 221102 (2006), Erratum-ibid. 97, 249901 (2006), astro-ph/0610509

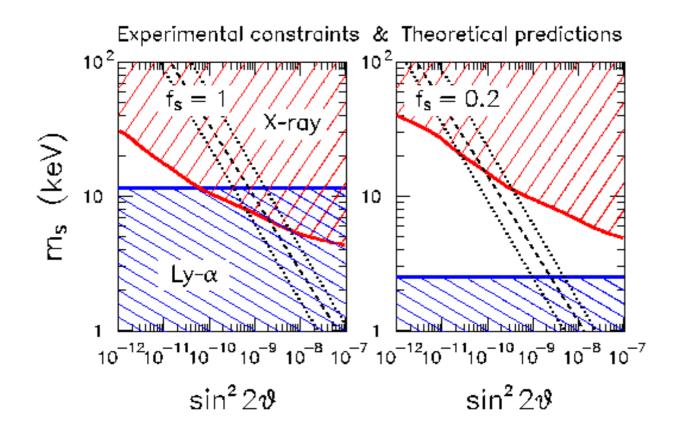
Indirect DM Detection: Photons (cont'd)

Signals are everywhere!

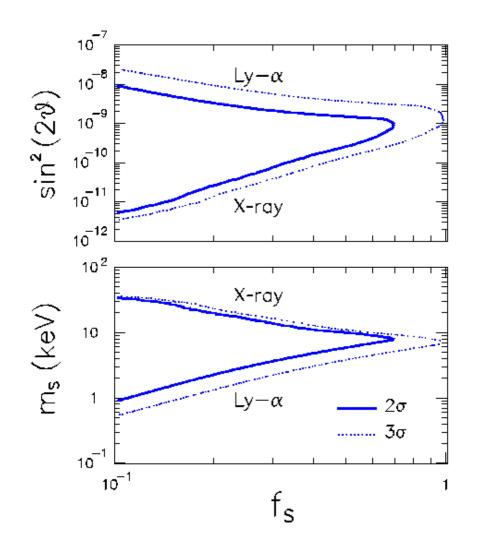
- Excess of GeV--ish photons everywhere: Could be due to (SUSY) WIMP with $m_{\chi} \sim 50$ GeV. ref: de Boer et al., Phys. Rev. Lett. 95, 209001 (2005), astro-ph/0602325
- TeV—ish photons from (near) galactic center: definitely not from DM. ref: H.E.S.S. collab., Phys. Rev. Lett. 97, 221102 (2006), Erratum-ibid. 97, 249901 (2006), astro-ph/0610509
- Lesson: Need to understand other sources of photons much better!

Sterile Neutrinos

If $m_{\nu_s} \sim 5$ keV: Could make warm/cool DM: alleviate "DM crises"


Sterile Neutrinos

- If $m_{\nu_s} \sim 5$ keV: Could make warm/cool DM: alleviate "DM crises"
- Are unstable, if they mix with ordinary neutrinos: $\nu_s \rightarrow \nu_i \gamma$: look for *X*-ray photons!


Sterile Neutrinos

- If $m_{\nu_s} \sim 5$ keV: Could make warm/cool DM: alleviate "DM crises"
- Are unstable, if they mix with ordinary neutrinos: $\nu_s \rightarrow \nu_i \gamma$: look for *X*-ray photons!
- No signals found: Simplest models excluded, if ν_s is to make all DM. ref: Palazzo, Cumberbatch, Slosar, Silk, arXiv:0707.1495 [astro-ph].

Sterile Neutrinos (cont'd)

Sterile Neutrinos (cont'd)

Summary and Conclusions

 We're still pretty sure that non-baryonic Dark Matter exists

Summary and Conclusions

- We're still pretty sure that non-baryonic Dark Matter exists
- We still don't know what it's made of

Summary and Conclusions

- We're still pretty sure that non-baryonic Dark Matter exists
- We still don't know what it's made of
- Experiment may give clues soon: LHC, GLAST, PAMELA, ...