Origin of Dark Matter

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

Contents

Statistics of Network Activities
 Highlights Necessarily subjective!

Contents

Statistics of Network Activities
 Highlights Necessarily subjective!
 Outlook

118 publications!

DM detection: 47 (PAMELA / Fermi-LAT effect)

- DM detection: 47 (PAMELA / Fermi-LAT effect)
- DM model building: 36

- DM detection: 47 (PAMELA / Fermi-LAT effect)
- DM model building: 36
- DM production: 10

- DM detection: 47 (PAMELA / Fermi-LAT effect)
- DM model building: 36
- DM production: 10
- DM and stars: 6

- DM detection: 47 (PAMELA / Fermi-LAT effect)
- DM model building: 36
- DM production: 10
- DM and stars: 6
- Non–standard cosmology and DM: 9

- DM detection: 47 (PAMELA / Fermi-LAT effect)
- DM model building: 36
- DM production: 10
- DM and stars: 6
- Non–standard cosmology and DM: 9
- Non–standard gravity and DM: 6

- DM detection: 47 (PAMELA / Fermi-LAT effect)
- DM model building: 36
- DM production: 10
- DM and stars: 6
- Non–standard cosmology and DM: 9
- Non–standard gravity and DM: 6
- Inflation and DM: 4

Highlight 1: e^{\pm} "Excesses"

PAMELA

Highlight 1: e^{\pm} "Excesses"

PAMELA

Remarks on "Excesses"

• PAMELA low-E discrepancy still unexplained!

Supposed to be due to solar modulation – but production of e^+ in and their propagation through the rest of our galaxy *is* understood?

Remarks on "Excesses"

• PAMELA low-E discrepancy still unexplained!

Supposed to be due to solar modulation – but production of e^+ in and their propagation through the rest of our galaxy *is* understood?

Shape of PAMELA high-Edata can be reproduced by p contamination at level of $3 \cdot 10^{-4}$ (p/e^+ ratio increases with E)! G. Tarle, Talk at PPC09. PAMELA claims discrimination at 10^{-5} level.

Remarks on "Excesses"

• PAMELA low-E discrepancy still unexplained!

Supposed to be due to solar modulation – but production of e^+ in and their propagation through the rest of our galaxy *is* understood?

Shape of PAMELA high-Edata can be reproduced by p contamination at level of $3 \cdot 10^{-4}$ (p/e^+ ratio increases with E)! G. Tarle, Talk at PPC09. PAMELA claims discrimination at 10^{-5} level.

Fermi/LAT large E excess is only about 1 systematic standard deviation! In this data set, deficit at lower E is nearly as likely as excess at high E.

E.g. Cirelli, Kadastik, Raidal, Strumia: arXiv:0809.2409

• $m_{\chi} \gtrsim 1$ TeV (Fermi/LAT syst. error?)

E.g. Cirelli, Kadastik, Raidal, Strumia: arXiv:0809.2409

- $m_{\chi} \gtrsim 1$ TeV (Fermi/LAT syst. error?)
- $\chi\chi$ annihilation cross section $\gtrsim 100 \times$ expectation (for χ to be thermal relic)

E.g. Cirelli, Kadastik, Raidal, Strumia: arXiv:0809.2409

- $m_{\chi} \gtrsim 1$ TeV (Fermi/LAT syst. error?)
- $\chi\chi$ annihilation cross section $\gtrsim 100 \times$ expectation (for χ to be thermal relic)
- Annihilation into hadrons suppressed (PAMELA \overline{p} data; but: uncertainties?)

E.g. Cirelli, Kadastik, Raidal, Strumia: arXiv:0809.2409

- $m_{\chi} \gtrsim 1$ TeV (Fermi/LAT syst. error?)
- $\chi\chi$ annihilation cross section $\gtrsim 100 \times$ expectation (for χ to be thermal relic)
- Annihilation into hadrons suppressed (PAMELA \overline{p} data; but: uncertainties?)

Examples:

Kohri, Mazumdar, Sahu, Stephens: arXiv:0907.0622; Fairbairn, Zupan: arXiv:0810.4147; Kohri, McDonald, Sahu: arXiv:0905.1312 To explain this through WIMP decay, need:

• $m_{\chi} \gtrsim 1$ TeV (Fermi/LAT syst. error?)

To explain this through WIMP decay, need:

- $m_{\chi} \gtrsim 1$ TeV (Fermi/LAT syst. error?)
- Lifetime $\tau_{\chi} \sim 10^{26}$ s ($\sim M_{\rm GUT}^4/m_{\chi}^5$)

To explain this through WIMP decay, need:

- $m_{\chi} \gtrsim 1$ TeV (Fermi/LAT syst. error?)
- Lifetime $\tau_{\chi} \sim 10^{26} \text{ s} (\sim M_{GUT}^4/m_{\chi}^5)$
- Decay into hadrons suppressed (PAMELA \overline{p} data; but: uncertainties?)

Constraints and other explanations

✓ Fermi/LAT diffuse γ flux: Cirelli, Panci, Serpico: arXiv:0912.0663; Papucci, Strumia: arXiv:0912.0742 Only annihaltion into $\mu^+\mu^-$ or $\ell^+\ell^-\ell^+\ell^-$ ($\ell = e, \mu$) is allowed, and only if DM density not too strongly peaked at galactic center!

Constraints and other explanations

- Fermi/LAT diffuse γ flux: Cirelli, Panci, Serpico: arXiv:0912.0663; Papucci, Strumia: arXiv:0912.0742 Only annihaltion into $\mu^+\mu^-$ or $\ell^+\ell^-\ell^+\ell^-$ ($\ell = e, \mu$) is allowed, and only if DM density not too strongly peaked at galactic center!
- Many other constraints have been discussed in 2008/9; e.g.
 BBN Hisano, Kawasaki, Kohri, Nakayama: arXiv:0810.1892; CMB Galli, locco, Bertone, Melchiorri: arXiv:0905.0003; ν bounds Hisano, Kawasaki, Kohri, Nakayama: arXiv:0812.0219

Constraints and other explanations

- ✓ Fermi/LAT diffuse γ flux: Cirelli, Panci, Serpico: arXiv:0912.0663; Papucci, Strumia: arXiv:0912.0742 Only annihaltion into $\mu^+\mu^-$ or $\ell^+\ell^-\ell^+\ell^-$ ($\ell = e, \mu$) is allowed, and only if DM density not too strongly peaked at galactic center!
- Many other constraints have been discussed in 2008/9; e.g.
 BBN Hisano, Kawasaki, Kohri, Nakayama: arXiv:0810.1892; CMB Galli, locco, Bertone, Melchiorri: arXiv:0905.0003; ν bounds Hisano, Kawasaki, Kohri, Nakayama: arXiv:0812.0219
- Several astrophysical explanations have been suggested; e.g. Uncertainties in "standard" background Delahaye et al.: arXiv:0809.5268, arXiv:0905.2144; Nearby Supernova Fujita, Kohri, Yamazaki, loka: arXiv:0903.5298; Pion production in nearby CR source: Mertsch, Sarkar: arXiv:0905.3152

My conclusion

The "background prediction" is based on an over-simplified model. Our galaxy is not a homogeneous cylinder! This model has sufficiently many parameters to reproduce some data, (e.g. the B/C ratio) but there's no guarantee that other predictions of this model are accurate.

My conclusion

- The "background prediction" is based on an over-simplified model. Our galaxy is not a homogeneous cylinder! This model has sufficiently many parameters to reproduce some data, (e.g. the B/C ratio) but there's no guarantee that other predictions of this model are accurate.
- Discrepancies between predicted and measured e[±] fluxes are probably due to a combination of effects, with Dark Matter annihilation or decay playing at most a minor role.

My conclusion

- The "background prediction" is based on an over-simplified model. Our galaxy is not a homogeneous cylinder! This model has sufficiently many parameters to reproduce some data, (e.g. the B/C ratio) but there's no guarantee that other predictions of this model are accurate.
- Discrepancies between predicted and measured e[±] fluxes are probably due to a combination of effects, with Dark Matter annihilation or decay playing at most a minor role.
- Clearcut identification of Dark Matter using charged cosmic rays or photons requires refined modelling of entire cosmix ray spectrum!

 Constraints on elastic WIMP–nucleus scattering improved a lot during network period: Xenon, CDMS,

. . .

- Constraints on elastic WIMP–nucleus scattering improved a lot during network period: Xenon, CDMS,
- DAMA signal persists! Measures annual modulation of signal rate, interpreted in terms of modulation of WIMP flux due to Earth's velocity adding to / subtracting from Sun's velocity.

- Constraints on elastic WIMP–nucleus scattering improved a lot during network period: Xenon, CDMS,
- DAMA signal persists! Measures annual modulation of signal rate, interpreted in terms of modulation of WIMP flux due to Earth's velocity adding to / subtracting from Sun's velocity.
 - Modulation amplitude in 2-6 keV ee window (in counts/d/kg/keV):
 0.020 ± 0.003 in 1995-2001;
 0.0107 ± 0.0019 in 2003-2007;
 0.0077 ± 0.0024 in 2007-2009 (my estimate, from combined result:
 0.0097 ± 0.0015 for 2003-2009): appears to be shrinking??

- Constraints on elastic WIMP–nucleus scattering improved a lot during network period: Xenon, CDMS,
- DAMA signal persists! Measures annual modulation of signal rate, interpreted in terms of modulation of WIMP flux due to Earth's velocity adding to / subtracting from Sun's velocity.
 - Modulation amplitude in 2-6 keV ee window (in counts/d/kg/keV):
 0.020 ± 0.003 in 1995-2001;
 0.0107 ± 0.0019 in 2003-2007;
 0.0077 ± 0.0024 in 2007-2009 (my estimate, from combined result:
 0.0097 ± 0.0015 for 2003-2009): appears to be shrinking??
 - No effort made to isolate nuclear recoil events

Light WIMPs (cont'd)

• Attempts to explain this in terms of a few GeV WIMPs heated up again after CoGeNT claimed a possible signal at low recoil energy – at best seems to be $\sim 2\sigma$ effect.

Light WIMPs (cont'd)

- Attempts to explain this in terms of a few GeV WIMPs heated up again after CoGeNT claimed a possible signal at low recoil energy at best seems to be $\sim 2\sigma$ effect.
- Recent re-analysis of XENON10 data seems to exclude this "light WIMP" scenario Sorensen, talk at IDM2010

Light WIMPs (cont'd)

- Attempts to explain this in terms of a few GeV WIMPs heated up again after CoGeNT claimed a possible signal at low recoil energy at best seems to be $\sim 2\sigma$ effect.
- Recent re-analysis of XENON10 data seems to exclude this "light WIMP" scenario Sorensen, talk at IDM2010
- Quite difficult to find models giving required large scattering cross sections

Network members explored relations between DM and traditional astrophysics!

Effect of WIMP annihilation in stars: Significant only for S-wave annihilation!

Network members explored relations between DM and traditional astrophysics!

- Effect of WIMP annihilation in stars: Significant only for S-wave annihilation!
 - Pop-III stars: effect small? Ripamonti et al.: arXiv:0903.0346

Network members explored relations between DM and traditional astrophysics!

- Effect of WIMP annihilation in stars: Significant only for S-wave annihilation!
 - Pop-III stars: effect small? Ripamonti et al.: arXiv:0903.0346
 - Current stars near galactic center: effect could be big. Scott, Edsjö, Fairbairn: arXiv:0904.2395; Scott, Fairbairn, Edsjö: arXiv:0810.5560; locco: arXiv:0906.4106

Network members explored relations between DM and traditional astrophysics!

- Effect of WIMP annihilation in stars: Significant only for S-wave annihilation!
 - Pop-III stars: effect small? Ripamonti et al.: arXiv:0903.0346
 - Current stars near galactic center: effect could be big. Scott, Edsjö, Fairbairn: arXiv:0904.2395; Scott, Fairbairn, Edsjö: arXiv:0810.5560; locco: arXiv:0906.4106
- 5 GeV non-annihilating (e.g. "asymmetric") WIMPs with very large scattering cross section might conceivably affect helio-seismology. Frandsen, Sarkar: arXiv:1003.4505

Network members derived new, improved estimates of the "local" DM density!

Using stars from SDSS only: 20% error! Strigari, Trotta: arXiv:0906.5361

Network members derived new, improved estimates of the "local" DM density!

- Using stars from SDSS only: 20% error! Strigari, Trotta: arXiv:0906.5361
- With additional input: 8% error!! Catena, Ullio: arXiv:0907.0018

Network members derived new, improved estimates of the "local" DM density!

- Using stars from SDSS only: 20% error! Strigari, Trotta: arXiv:0906.5361
- With additional input: 8% error!! Catena, Ullio: arXiv:0907.0018
- Allowing for non-spherical DM halo: should multiply with factor 1.2 ± 0.2 Pato et al.: arXiv:1006.1322

Network members derived new, improved estimates of the "local" DM density!

- Using stars from SDSS only: 20% error! Strigari, Trotta: arXiv:0906.5361
- With additional input: 8% error!! Catena, Ullio: arXiv:0907.0018
- Allowing for non–spherical DM halo: should multiply with factor 1.2 ± 0.2 Pato et al.: arXiv:1006.1322

Upshot:

$$\rho_{\rm DM}^{\rm here} = (0.39 \pm 0.08) \frac{\rm GeV}{\rm cm^3}$$

Highlight 5: Sterile keV neutrinos

Network members constrained simplest warm Dark Matter model.

Simplest model (thermal production, no asymmetry) declared excluded in Lesvos rapporteur talk: lower bound on m_{ν_s} from Ly- α "forest" incompatible with upper bound from X-ray searches ($\nu_s \rightarrow \nu \gamma$) Palazzo et al.: arXiv:0707.1495

• If $\nu_s - \bar{\nu}_S$ asymmetry $\geq 10^{-5}$:

- If $\nu_s \bar{\nu}_S$ asymmetry $\geq 10^{-5}$:
 - Larger relic density for given mixing angle

• If $\nu_s - \bar{\nu}_S$ asymmetry $\geq 10^{-5}$:

- Larger relic density for given mixing angle
- $\bullet \implies$ need smaller mixing angle

- If $\nu_s \bar{\nu}_S$ asymmetry $\geq 10^{-5}$:
 - Larger relic density for given mixing angle
 - $\bullet \implies$ need smaller mixing angle
 - \implies weaker upper bound on m_{ν_s} from X–ray data!

- If $\nu_s \bar{\nu}_S$ asymmetry $\geq 10^{-5}$:
 - Larger relic density for given mixing angle
 - $\bullet \implies$ need smaller mixing angle
 - \implies weaker upper bound on m_{ν_s} from X-ray data!
 - In addition: different phase space distribution

- If $\nu_s \bar{\nu}_S$ asymmetry $\geq 10^{-5}$:
 - Larger relic density for given mixing angle
 - $\bullet \implies$ need smaller mixing angle
 - \implies weaker upper bound on m_{ν_s} from X-ray data!
 - In addition: different phase space distribution
 - \implies weaker lower bound on m_{ν_s} from Ly- α data!

- If $\nu_s \bar{\nu}_S$ asymmetry $\geq 10^{-5}$:
 - Larger relic density for given mixing angle
 - $\bullet \implies$ need smaller mixing angle
 - \implies weaker upper bound on m_{ν_s} from X-ray data!
 - In addition: different phase space distribution
 - \implies weaker lower bound on m_{ν_s} from Ly- α data!
 - Altogether: $2 \text{ keV} \le m_{\nu_s} \le 50 \text{ keV}$ allowed! Boyarsky, Lesgourgues, Ruchayskiy, Viel: arXiv:0812.3256 and arXiv:0812.0010; Acero, Lesgourgues: arXiv:0812.2249

- If $\nu_s \bar{\nu}_S$ asymmetry $\geq 10^{-5}$:
 - Larger relic density for given mixing angle
 - $\bullet \implies$ need smaller mixing angle
 - \implies weaker upper bound on m_{ν_s} from X-ray data!
 - In addition: different phase space distribution
 - \implies weaker lower bound on m_{ν_s} from Ly- α data!
 - Altogether: $2 \text{ keV} \le m_{\nu_s} \le 50 \text{ keV}$ allowed! Boyarsky, Lesgourgues, Ruchayskiy, Viel: arXiv:0812.3256 and arXiv:0812.0010; Acero, Lesgourgues: arXiv:0812.2249
- Large $\nu_s \bar{\nu}_s$ asymmetry allowed if generated below elw transition

- If $\nu_s \bar{\nu}_S$ asymmetry $\geq 10^{-5}$:
 - Larger relic density for given mixing angle
 - $\bullet \implies$ need smaller mixing angle
 - \implies weaker upper bound on m_{ν_s} from X-ray data!
 - In addition: different phase space distribution
 - \implies weaker lower bound on m_{ν_s} from Ly- α data!
 - Altogether: $2 \text{ keV} \le m_{\nu_s} \le 50 \text{ keV}$ allowed! Boyarsky, Lesgourgues, Ruchayskiy, Viel: arXiv:0812.3256 and arXiv:0812.0010; Acero, Lesgourgues: arXiv:0812.2249
- Large $\nu_s \bar{\nu}_s$ asymmetry allowed if generated below elw transition
- But: needs additional "new physics"

Highlight 6: TeVeS and Dark Matter

Network members showed that "modified Newtonian gravity" still requires Dark Matter! TeVeS (modified theory of Newtonian gravity) cannot simultaneously explain galactic rotation curves and lensing data! Ferreras, Mavromatos, Sakellariadou, Yusaf: arXiv:0901.3932 and arXiv:0907.1463

 We're still pretty sure that non-baryonic Dark Matter exists

- We're still pretty sure that non-baryonic Dark Matter exists
- We still don't know what it's made of

- We're still pretty sure that non-baryonic Dark Matter exists
- We still don't know what it's made of
- Beware of wrong experiments! ATIC vs. Fermi/LAT at ~ TeV, EGRET vs. Fermi/LAT at ~ GeV, . . .

- We're still pretty sure that non-baryonic Dark Matter exists
- We still don't know what it's made of
- Beware of wrong experiments! ATIC vs. Fermi/LAT at ~ TeV, EGRET vs. Fermi/LAT at ~ GeV, ...
- People have been constructing complicated models, and will continue to do so, but simple ones are still fine.

- We're still pretty sure that non-baryonic Dark Matter exists
- We still don't know what it's made of
- Beware of wrong experiments! ATIC vs. Fermi/LAT at ~ TeV, EGRET vs. Fermi/LAT at ~ GeV, ...
- People have been constructing complicated models, and will continue to do so, but simple ones are still fine.
- Experiment may give clues soon: LHC, Xenon–100, AMS–02, ...