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Introduction: Why SO(10)?

3 gauge couplings of SM unify quite nicely in MSSM

Minimal unified group has rank 4: SU(5).

In SU(5), νR would have to be gauge singlet.

Instead, in SO(10): νR required to fill 16 with matter
(s)fermions!

Naturally allows to implement see–saw mechanism!

SUSY SO(10) – p. 3/25



Introduction: Why intermediate scales?

SO(10) has rank 5

SUSY SO(10) – p. 4/25



Introduction: Why intermediate scales?

SO(10) has rank 5

Usually need several Higgs reps to break it to SM
gauge group

SUSY SO(10) – p. 4/25



Introduction: Why intermediate scales?

SO(10) has rank 5

Usually need several Higgs reps to break it to SM
gauge group

No reason why the corresponding vevs should be the
same

SUSY SO(10) – p. 4/25



Introduction: Why intermediate scales?

SO(10) has rank 5

Usually need several Higgs reps to break it to SM
gauge group

No reason why the corresponding vevs should be the
same

See–saw:

mν =
m2

νD

MνR

< 3 meV ,

if mνD
≤ mt = 170 GeV, MνR

≃ MX ≥ 1016 GeV!

SUSY SO(10) – p. 4/25



Introduction: Why intermediate scales?

SO(10) has rank 5

Usually need several Higgs reps to break it to SM
gauge group

No reason why the corresponding vevs should be the
same

See–saw:

mν =
m2

νD

MνR

< 3 meV ,

if mνD
≤ mt = 170 GeV, MνR

≃ MX ≥ 1016 GeV!

Need mν3
> 50 meV!

SUSY SO(10) – p. 4/25



Introduction: Why intermediate scales?

SO(10) has rank 5

Usually need several Higgs reps to break it to SM
gauge group

No reason why the corresponding vevs should be the
same

See–saw:

mν =
m2

νD

MνR

< 3 meV ,

if mνD
≤ mt = 170 GeV, MνR

≃ MX ≥ 1016 GeV!

Need mν3
> 50 meV!

=⇒ need MνR
≤ 5 · 1014 GeV!
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The model

Ref: al. et Senjanovic, Nucl. Phys B597 (2001) 89

SO(10) −→ SU(4) ⊗ SU(2)L ⊗ SU(2)R ⊗ D at MX using 54

−→ SU(3)C ⊗ U(1)B−L ⊗ SU(2)L ⊗ SU(2)R at MC using 45

−→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y at MR using 126, 126

D: Discrete symmetry, ensures parity (same L and R
couplings)
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Higgs fields

Most general renormalizable superpotential
=⇒ ∃ “light” Higgs states:
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Higgs fields

Most general renormalizable superpotential
=⇒ ∃ “light” Higgs states:

54 = (1, 1, 1) ⊕ (20, 1, 1) ⊕ (1, 3, 3) ⊕ (6, 2, 2) ;

45 = (15, 1, 1) ⊕ (1, 1, 3) ⊕ (1, 3, 1) ⊕ (6, 2, 2) ;

126 = (10, 1, 3) ⊕ (10, 3, 1) ⊕ (15, 2, 2) ⊕ (6, 1, 1) ;

126 = (10, 1, 3) ⊕ (10, 3, 1) ⊕ (15, 2, 2) ⊕ (6, 1, 1) .

Decomposition under SU(4) ⊗ SU(2)L ⊗ SU(2)R; components

obtaining vev are written first.
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Higgs spectrum

State Mass

all of 54

all of 45, except (15, 1, 1)45 MX

all of 126 and 126, except 10, 10 of SU(4)

(10, 3, 1)
126

and (10, 3, 1)126

3, 6 of SU(3)C in (10, 1, 3)
126

and (10, 1, 3)126 MC

color triplets of (15, 1, 1)45

(δ0 − δ
0
), δ+, δ

−

MR

color octet and singlet of (15, 1, 1)A M̃1 ≡ max
[

M2

R

MC
,

M2

C

MX

]

(δ0 + δ
0
), δ++, δ

−−

M̃2 ≡ M2
R/MX

δ = (1, 1, 3)126; δ̄ = (1, 1, 3)
126
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Running gauge couplings

Existence of states with mass < MR is crucial for
allowing intermediate scales, given that single–step
unification works.

SUSY SO(10) – p. 8/25



Running gauge couplings

Existence of states with mass < MR is crucial for
allowing intermediate scales, given that single–step
unification works.

From RGE: Can compute MC and MR for given MX

(and given weak–scale parameters): No prediction for
MX or ratios of weak–scale couplings.

SUSY SO(10) – p. 8/25



Running gauge couplings

Existence of states with mass < MR is crucial for
allowing intermediate scales, given that single–step
unification works.

From RGE: Can compute MC and MR for given MX

(and given weak–scale parameters): No prediction for
MX or ratios of weak–scale couplings.

In particular, MX = MC = MR remains possible: allows
smooth transition to “Grand Desert”

SUSY SO(10) – p. 8/25



Running gauge couplings

Existence of states with mass < MR is crucial for
allowing intermediate scales, given that single–step
unification works.

From RGE: Can compute MC and MR for given MX

(and given weak–scale parameters): No prediction for
MX or ratios of weak–scale couplings.

In particular, MX = MC = MR remains possible: allows
smooth transition to “Grand Desert”

Introduce second pair of 10, 10 with mass M2, to allow
more realistic fermion masses (see below).
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Relation between scales
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Superpotential aboveMC

W = Y1F
cFΦ1 +

1

2
YN

(
F cΣ̄RF c + F Σ̄LF

)

F = (4, 2, 1): left–handed matter fields
F c = (4̄, 1, 2): right–handed matter fields
Φ1,2 = (1, 2, 2): Higgs bi–doublets
Σ̄R = (10, 1, 3) of 126

Σ̄L = (10, 3, 1) of 126
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Superpotential aboveMC

W = Y1F
cFΦ1 +

1

2
YN

(
F cΣ̄RF c + F Σ̄LF

)

F = (4, 2, 1): left–handed matter fields
F c = (4̄, 1, 2): right–handed matter fields
Φ1,2 = (1, 2, 2): Higgs bi–doublets
Σ̄R = (10, 1, 3) of 126

Σ̄L = (10, 3, 1) of 126

Have set coupling Y2 of Φ2 to zero: can always be done via
field re–definition

YN generates νR mass!
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Superpotential betweenMR and MC

W = Yq1
QcQΦ1 + Yl1L

cLΦ1 +
1

2
YNLcδ̄Lc

Qc = (3̄, 1, 2,−1/3): right–handed quarks
Q = (3, 2, 1, 1/3): left–handed quarks
Lc = (1, 1, 2, 1): right–handed leptons
L = (1, 2, 1,−1): left–handed leptons
δ̄ = (1, 1, 3,−2): breaks SU(2)R ⊗ U(1)B−L → U(1)Y .
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Superpotential betweenMR and MC

W = Yq1
QcQΦ1 + Yl1L

cLΦ1 +
1

2
YNLcδ̄Lc

Qc = (3̄, 1, 2,−1/3): right–handed quarks
Q = (3, 2, 1, 1/3): left–handed quarks
Lc = (1, 1, 2, 1): right–handed leptons
L = (1, 2, 1,−1): left–handed leptons
δ̄ = (1, 1, 3,−2): breaks SU(2)R ⊗ U(1)B−L → U(1)Y .

Matching condition at E = MC :

Yq1
= Yl1 = Y1
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Superpotential betweenMR and M̃2

W = Yu1
U cQHu1

+ Yd1
DcQHd1

+ Yl1E
cLHd1

+
1

2
YNEcδ̄−−Ec
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Superpotential betweenMR and M̃2

W = Yu1
U cQHu1

+ Yd1
DcQHd1

+ Yl1E
cLHd1

+
1

2
YNEcδ̄−−Ec

Matching condition at E = MR:

Yu1
= Yd1

= Yq1
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Superpotential belowM̃2

As in MSSM:

W = YuU cQHu + YdD
cHd + YlE

cLHd
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Superpotential belowM̃2

As in MSSM:

W = YuU cQHu + YdD
cHd + YlE

cLHd

Matching:

Hu,d = cos ϕu,dH(u,d)1+sin ϕu,dH(u,d)2 =⇒ Yu,d = Y(u,d)1 cos ϕu,d
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Superpotential belowM̃2

As in MSSM:

W = YuU cQHu + YdD
cHd + YlE

cLHd

Matching:

Hu,d = cos ϕu,dH(u,d)1+sin ϕu,dH(u,d)2 =⇒ Yu,d = Y(u,d)1 cos ϕu,d

=⇒ need cos ϕu ≃ 1, since Yt already near maximal

=⇒ cos ϕd =
Yd(M2)

Yu(MR)

[
g2
1(MR)

g2
1(M2)

]1/60

=⇒ Yd1
≃ Yu,1: always in “large tanβ” scenario for E ≥ M̃2!
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Gaugino masses

Assume unified boundary conditions: scalar mass m0,
gaugino mass M1/2, single parameter A0.
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Gaugino masses

Assume unified boundary conditions: scalar mass m0,
gaugino mass M1/2, single parameter A0.

Gauge β−functions increase for E > M̃2

=⇒ ratios Mi/M1/2 decrease (Mi, i = 1, 2, 3: weak–scale
gaugino masses)

E.g. for MX = 3 · 1015 GeV (minimal value):
M1 = 0.23M1/2

M2 = 0.46M1/2

M3 = 1.4M1/2

Coefficients nearly two times smaller than in mSUGRA.
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Gaugino masses

Assume unified boundary conditions: scalar mass m0,
gaugino mass M1/2, single parameter A0.

Gauge β−functions increase for E > M̃2

=⇒ ratios Mi/M1/2 decrease (Mi, i = 1, 2, 3: weak–scale
gaugino masses)

E.g. for MX = 3 · 1015 GeV (minimal value):
M1 = 0.23M1/2

M2 = 0.46M1/2

M3 = 1.4M1/2

Coefficients nearly two times smaller than in mSUGRA.

Ratios M1 : M2 : M3 same as in mSUGRA!
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Sfermion masses (1st generation)

For fixed Mi, get larger gaugino loop contributions to
sfermion masses; partly cancels previous effect when
expressed in terms of M1/2:
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Sfermion masses (1st generation)

For fixed Mi, get larger gaugino loop contributions to
sfermion masses; partly cancels previous effect when
expressed in terms of M1/2:

m2
f̃
(MSUSY) = m2

0 + cf̃M2
1/2

cẽR
= 0.15 (as in mSUGRA);

cẽL
= 0.21 (smaller than in mSUGRA);

cq̃ = 1.15 (smaller than in mSUGRA).
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Sfermion masses (1st generation)

For fixed Mi, get larger gaugino loop contributions to
sfermion masses; partly cancels previous effect when
expressed in terms of M1/2:

m2
f̃
(MSUSY) = m2

0 + cf̃M2
1/2

cẽR
= 0.15 (as in mSUGRA);

cẽL
= 0.21 (smaller than in mSUGRA);

cq̃ = 1.15 (smaller than in mSUGRA).

mẽR
≥ 1.68|M1|: No co–annihilation of χ̃0

1 with ẽR, µ̃R!
mẽL

≥ |M2|: No W̃ → ℓ̃L decays!
mq̃ ≥ 0.75mg̃: Similar to mSUGRA
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3rd generation sfermions & Higgs

YN reduces mτ̃L,R
, mt̃L,R

, mb̃R
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YN reduces mτ̃L,R
, mt̃L,R

, mb̃R

=⇒ increases m2
Hu

(MSUSY) (and hence mA)
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3rd generation sfermions & Higgs

YN reduces mτ̃L,R
, mt̃L,R

, mb̃R

=⇒ increases m2
Hu

(MSUSY) (and hence mA)

=⇒ reduces |µ(MSUSY)| via EWSB condition
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3rd generation sfermions & Higgs

YN reduces mτ̃L,R
, mt̃L,R

, mb̃R

=⇒ increases m2
Hu

(MSUSY) (and hence mA)

=⇒ reduces |µ(MSUSY)| via EWSB condition

mν3
∝ m2

t

YNMR
=⇒ smaller mν3

implies larger YN !
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Effect on the spectrum
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Survey of parameter space
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pink: b → sγ excluded; blue: favored by gµ; green: DM allowed;
black: all ok
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black: all ok
In mSUGRA: don’t find allowed region (DM & gµ) with
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0 ≫ M2
1/2!
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Same fortan β = 50
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(a)  tanb=50, A0=0, mν=0.2eV

In right frame, DM relic density too small everywhere

∼ 50% of plane DM–allowed for tan β = 49!

SUSY SO(10) – p. 19/25



Impact on DM searches

For m0 ≫ M1/2: (“focus point”, but no focussing in this
scenario!) Very similar to mSUGRA, if mχ̃0

1
, Ωχ̃0

1
are fixed.
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τ̃1 co–annihilation region: More promising, due to
reduced |µ|
=⇒ more higgsino–gaugino mixing
=⇒ enhanced couplings of χ̃0

1 to Higgs bosons and Z0!

SUSY SO(10) – p. 20/25



Impact on DM searches

For m0 ≫ M1/2: (“focus point”, but no focussing in this
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LHC signals: large m0 region

In SO(10) model: can get large bino–higgsino mixing for
relatively modest m0, where q̃ can be produced at LHC.
This is not possible in mSUGRA.
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This is not possible in mSUGRA.

To get correct DM density in mSUGRA for same mq̃, mg̃:
have to increase tanβ quite a lot (to reach “A−funnel”)

=⇒ mSUGRA has much smaller heavy Higgs masses: can
be detected in τ+τ− channel!
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LHC signals: large m0 region

In SO(10) model: can get large bino–higgsino mixing for
relatively modest m0, where q̃ can be produced at LHC.
This is not possible in mSUGRA.

To get correct DM density in mSUGRA for same mq̃, mg̃:
have to increase tanβ quite a lot (to reach “A−funnel”)

=⇒ mSUGRA has much smaller heavy Higgs masses: can
be detected in τ+τ− channel!

mSUGRA has much larger |µ|:changes χ̃0, χ̃± spectrum;
can be checked via ℓ+ℓ− invariant mass distribution!
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Mℓ+ℓ− distribution ( m0 ≫ M1/2)
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LHC signals: co–annihilation region

In mSUGRA: either slightly change A0 (option a) or slightly
increase tanβ (option b) to match Ωχ̃0

1
for fixed mq̃, mg̃.
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LHC signals: co–annihilation region

In mSUGRA: either slightly change A0 (option a) or slightly
increase tanβ (option b) to match Ωχ̃0

1
for fixed mq̃, mg̃.

In SO(10): smaller mt̃1,2, mb̃1
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LHC signals: co–annihilation region

In mSUGRA: either slightly change A0 (option a) or slightly
increase tanβ (option b) to match Ωχ̃0

1
for fixed mq̃, mg̃.

In SO(10): smaller mt̃1,2, mb̃1

Smaller |µ| =⇒ smaller mχ̃0

3,4
, mχ̃±
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LHC signals: co–annihilation region
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LHC signals: co–annihilation region

In mSUGRA: either slightly change A0 (option a) or slightly
increase tanβ (option b) to match Ωχ̃0

1
for fixed mq̃, mg̃.

In SO(10): smaller mt̃1,2, mb̃1

Smaller |µ| =⇒ smaller mχ̃0

3,4
, mχ̃±

2

=⇒ more g̃ → χ̃0
3,4, χ̃±

2 decays

=⇒ more g̃ → Z0 on–shell in SO(10)!
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SubtractedMℓ+ℓ− distribution ( m0 ≪ M1/2)
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SO(10) has significantly more pronounced Z0 peak

SO(10) model also has more like–sign di–lepton events:
492 vs. 422 (434).
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Summary and Outlook

SO(10) model natural if ∃νR state!

Allows intermediate scale; required for see–saw.

This modifies the RG running below MX .

For fixed boundary condition at MX : reduced |µ| tends
to make DM detection easier!

Points with same mq̃, mg̃, mχ̃0

1
, Ωχ̃0

1
can be

distinguished at LHC, using di–lepton events and heavy
Higgs searches

Results should be qualitatively same in other models
where MR < MX .

To fix high–scale physics: need to know mν , proton
lifetime!
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